Crystal-contact engineering to obtain a crystal form of the Kelch domain of human Keap1 suitable for ligand-soaking experiments.

Acta Crystallogr Sect F Struct Biol Cryst Commun

Department of Lead Identification and Optimization Support, Boehringer Ingelheim Pharma GmbH and Co KG, Birkendorferstrasse 65, 88400 Biberach, Germany.

Published: June 2013

Keap1 is a substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex and plays an important role in the cellular response to oxidative stress. It binds Nrf2 with its Kelch domain and thus triggers the ubiquitinylation and degradation of Nrf2. Oxidative stress prevents the degradation of Nrf2 and leads to the activation of cytoprotective genes. Therefore, Keap1 is an attractive drug target in inflammatory diseases. The support of a medicinal chemistry effort by structural research requires a robust crystallization system in which the crystals are preferably suited for performing soaking experiments. This facilitates the generation of protein-ligand complexes in a routine and high-throughput manner. The structure of human Keap1 has been described previously. In this crystal form, however, the binding site for Nrf2 was blocked by a crystal contact. This interaction was analysed and mutations were introduced to disrupt this crystal contact. One double mutation (E540A/E542A) crystallized in a new crystal form in which the binding site for Nrf2 was not blocked and was accessible to small-molecule ligands. The crystal structures of the apo form of the mutated Keap1 Kelch domain (1.98 Å resolution) and of the complex with an Nrf2-derived peptide obtained by soaking (2.20 Å resolution) are reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3668573PMC
http://dx.doi.org/10.1107/S174430911301124XDOI Listing

Publication Analysis

Top Keywords

crystal form
12
kelch domain
12
human keap1
8
oxidative stress
8
degradation nrf2
8
form binding
8
binding site
8
site nrf2
8
nrf2 blocked
8
crystal contact
8

Similar Publications

Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.

View Article and Find Full Text PDF

Formation and crystalline structure of spherulites from pea and high amylose maize starches.

Int J Biol Macromol

January 2025

Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA. Electronic address:

Starch spherulite is a unique form of resistant starch characterized by a spherical structure with crystalline lamellae that are radially oriented and may find applications in delivery of nutrients and bioactives to the lower gastrointestinal tract. Formation of starch spherulites generally requires heating to a high temperature followed by quenching and long crystallization time. The objectives of this study were to gain a deeper understanding of the factors influencing spherulite formation from pea starch (PS) and high-amylose maize starch (HAMS) and investigate if spherulites could be formed by a slow cooling rate and determine the crystalline structure and morphology of the spherulites formed.

View Article and Find Full Text PDF

Ferritin, a highly conserved iron storage protein, is among the earliest proteins that have been purified, named, and characterized due to its unique properties that continue to captivate researchers. Ferritin is composed of 24 subunits that form an almost spherical shell delimiting a cavity where thousands of iron atoms can be stored in a nontoxic ferric form, thereby preventing cytosolic iron from catalyzing oxidative stress. Mitochondrial and extracellular ferritin have also been described and characterized, with the latter being associated with several signaling functions.

View Article and Find Full Text PDF

DNA gyrase is a bacterial type IIA topoisomerase that can create temporary double-stranded DNA breaks to regulate DNA topology and an archetypical target of antibiotics. The widely used quinolone class of drugs use a water-metal ion bridge in interacting with the GyrA subunit of DNA gyrase. Zoliflodacin sits in the same pocket as quinolones but interacts with the GyrB subunit and also stabilizes lethal double-stranded DNA breaks.

View Article and Find Full Text PDF

A novel organic-inorganic eutectic phase change material (PCM) based on sodium acetate trihydrate (SAT) and polyethylene glycol (PEG) was developed to meet the needs of heat recovery and building heating. Three kinds of PEG with different molecular weights were selected to form organic-inorganic eutectic PCM with SAT. The thermal properties of three series of SAT-PEG eutectic PCM were compared based on DSC results, focusing on the impact of PEG addition on the phase change temperature and enthalpy of SAT, as well as the melting uniformity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!