Background: Fluorine-enhanced MRI is a relatively inexpensive and straightforward technique that facilitates regional assessments of pulmonary ventilation. In this report, we assess its suitability through the use of perfluoropropane (PFP) in a cohort of human subjects with normal lungs and subjects with lung disease.
Methods: Twenty-eight subjects between the ages of 18 and 71 years were recruited for imaging and were classified based on spirometry findings and medical history. Imaging was carried out on a Siemens TIM Trio 3T MRI scanner using two-dimensional, gradient echo, fast low-angle shot and three-dimensional gradient echo, volumetric, interpolated, breath-hold examination sequences for proton localizers and PFP functional scans, respectively. Respiratory waveforms and physiologic signals of interest were monitored throughout the imaging sessions. A region-growing algorithm was applied to the proton localizers to define the lung field of view for analysis of the PFP scans.
Results: All subjects tolerated the gas mixture well with no adverse side effects. Images of healthy lungs demonstrated a homogeneous distribution of the gas with sufficient signal-to-noise ratios, while lung images from asthmatic and emphysematous lungs demonstrated increased heterogeneity and ventilation defects.
Conclusions: Fluorine-enhanced MRI using a normoxic PFP gas mixture is a well-tolerated, radiation-free technique for regionally assessing pulmonary ventilation. The inherent physical characteristics and applicability of the gaseous agent within a magnetic resonance setting facilitated a clear differentiation between normal and diseased lungs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1378/chest.12-2597 | DOI Listing |
Eur J Radiol
January 2025
Department of Radiology, West China Hospital Sichuan University Chengdu Sichuan China. Electronic address:
Purpose: To develop and validate an MRI-based model for predicting postoperative early (≤2 years) recurrence-free survival (RFS) in patients receiving upfront surgical resection (SR) for beyond Milan hepatocellular carcinoma (HCC) and to assess the model's performance in separate patients receiving neoadjuvant therapy for similar-stage tumors.
Method: This single-center retrospective study included consecutive patients with resectable BCLC A/B beyond Milan HCC undergoing upfront SR or neoadjuvant therapy. All images were independently evaluated by three blinded radiologists.
J Med Internet Res
January 2025
Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.
Background: Despite the increasing popularity of electronic devices, the longitudinal effects of daily prolonged electronic device usage on brain health and the aging process remain unclear.
Objective: The aim of this study was to investigate the impact of the daily use of mobile phones/computers on the brain structure and the risk of neurodegenerative diseases.
Methods: We used data from the UK Biobank, a longitudinal population-based cohort study, to analyze the impact of mobile phone use duration, weekly usage time, and playing computer games on the future brain structure and the future risk of various neurodegenerative diseases, including all-cause dementia (ACD), Alzheimer disease (AD), vascular dementia (VD), all-cause parkinsonism (ACP), and Parkinson disease (PD).
J Agric Food Chem
January 2025
Yibin Academy of Southwest University, Yibin 644000, China.
Consumer concerns regarding food nutrition and quality are becoming increasingly prevalent. High-resolution mass spectrometry (HRMS)-based metabolomics stands as a cutting-edge and widely embraced technique in the realm of food component analysis and detection. It boasts the capability to identify character metabolites at exceedingly low abundances, which remain undetectable by conventional platforms.
View Article and Find Full Text PDFJBJS Case Connect
October 2024
Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
Case: A 34-year-old man presented at our hospital with knee collapse. Magnetic resonance imaging (MRI) revealed posterior compression of the dural sac by a lumbar epidural lesion; however, a diagnosis could not be reached. Gadolinium (Gd)-enhanced 3-dimensional MRI (3D-MRI) clearly delineated the morphology, enabling us to make a preoperative diagnosis of posterior epidural migration of the lumbar disc fragment (PEMLDF).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Geriatric Medicine, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
Objective: To develop a predictive model for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) through radiomics analysis, integrating data from both enhanced computed tomography (CT) and magnetic resonance imaging (MRI).
Methods: A retrospective analysis was conducted on 93 HCC patients who underwent partial hepatectomy. The gold standard for MVI was based on the histopathological diagnosis of the tissue.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!