Purpose: In patients undergoing primary percutaneous coronary intervention (PCI) for the treatment of ST-segment elevation myocardial infarction (STEMI), coronary microvascular dysfunction is associated with poor prognosis. Coronary microvascular resistance is predominantly regulated by ATP-sensitive potassium (KATP) channels. The aim of this study was to clarify whether nicorandil, a hybrid KATP channel opener and nitric oxide donor, may be a good candidate for improving microvascular dysfunction even when administered after primary PCI.
Methods: We compared the beneficial effects of nicorandil and nitroglycerin on microvascular function in 60 consecutive patients with STEMI. After primary PCI, all patients received single intracoronary administrations of nitroglycerin (250 μg) and nicorandil (2 mg) in a randomized order; 30 received nicorandil first, while the other 30 received nitroglycerin first. Microvascular dysfunction was evaluated with the index of microcirculatory resistance (IMR), defined as the distal coronary pressure multiplied by the hyperemic mean transit time.
Results: As a first administration, nicorandil decreased IMR significantly more than did nitroglycerin (median [interquartile ranges]: 10.8[5.2-20.7] U vs. 2.1[1.0-6.0] U, p=0.0002).As a second administration, nicorandil further decreased IMR, while nitroglycerin did not (median [interquartile ranges]: 6.0[1.3-12.7] U vs. -1.4[-2.6 to 1.3] U, p<0.0001). The IMR after the second administration was significantly associated with myocardial blush grade, angiographic TIMI frame count after the procedure, and peak creatine kinase level.
Conclusion: Intracoronary nicorandil reduced microvascular dysfunction after primary PCI more effectively than did nitroglycerin in patients with STEMI, probably via its KATP channel-opening effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10557-013-6456-y | DOI Listing |
J Cardiovasc Med (Hagerstown)
February 2025
Center of Excellence in Cardiovascular Sciences, Ospedale Isola Tiberina, Gemelli Isola.
Aims: Coronary microvascular dysfunction (CMD) is a heterogeneous condition defined by reduced coronary flow reserve (CFR). The new index 'microvascular resistance reserve' (MRR) has been developed, but its role is unclear. We investigate the relationships between functional indices in ANOCA (angina and non-obstructive coronary arteries) patients and evaluate the hemodynamic features of different CMD subtypes.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato s.s. 554 Monserrato (Cagliari), Cagliari, 09045, Italy.
Objective: The purpose of this study was to explore microvascular function impairment using first-pass cardiovascular magnetic resonance (CMR) in patients with Takotsubo syndrome (TS). Moreover, we explored myocardial microcirculation in patients with TS and related this to demographic data, cardiovascular risk factors, clinical parameters, cardiac biomarkers, and cardiac function.
Methods: This retrospective study performed CMR first-pass perfusion scans in 42 consecutive patients with TS (37 females, 70.
Front Cardiovasc Med
January 2025
Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
Background: Angiography-derived microcirculatory resistance (AMR) is proposed as a novel, pressure- temperature-wire-free and less-invasive method to evaluate coronary microvascular dysfunction (CMD). This study aims to examine the prognostic role of CMD assessed by AMR in predicting adverse events in acute coronary syndrome (ACS) patients with chronic kidney disease (CKD).
Methods: This retrospective cohort study included ACS with CKD patients in the China-Japan Friendship Hospital from January 2016 to November 2022.
J Cardiol Cases
January 2025
Department of Cardiology, Sapporo Kojinkai Memorial Hospital, Sapporo, Japan.
Unlabelled: Myocarditis and pericarditis, or myopericarditis, is a rare, albeit life-threatening, cardiac complication of coronavirus disease 2019 (COVID-19). Although most patients recover from myocardial inflammation within weeks of the acute infection, there are concerns about acute and long-term myocardial injury. Coronary microvascular dysfunction and myocardial inflammation in the affected myocardium might be key factors in developing acute COVID-19-associated myopericarditis.
View Article and Find Full Text PDFAdv Skin Wound Care
January 2025
Keith Gordon Harding, Mb ChB, CBE, FRCGP, FRCP, FRCS, FLSW, is Professor Emeritus Cardiff University, Cardiff, Wales; Adjunct Professor Monash University Malaysia, Subang Jaya, Selangor, Malaysia; and Co-Founder and Editor in Chief of the International Wound Journal. Melissa Blow, BSc, is Principal Podiatrist, South East Wales Vascular Network, Aneurin Bevan University Health Board, Cardiff, Wales. Faye Ashton, BSc, is Vascular Research Nurse, Leicester Biomedical Research Centre, Glenfield University Hospital, Leicester, United Kingdom. David Bosanquet, MD, is Consultant Vascular Surgeon, South East Wales Vascular Network, Aneurin Bevan University Health Board. Acknowledgments: The authors acknowledge the assistance of Firstkind Ltd, Hawk House, Peregrine Business Park, Gomm Road, High Wycombe, United Kingdom HP13 7DL for sponsoring the study (grant ref: FSK-SPECKLE-001) and provided the NMES devices for the trial. Keith Harding has received payments for consulting work from Firstkind Ltd. The authors have disclosed no other financial relationships related to this article. Submitted November 28, 2023; accepted in revised form April 17, 2024.
Objective: To determine if intermittent neuromuscular electrostimulation (NMES) of the common peroneal nerve increases microvascular flow and pulsatility in and around the wound bed of patients with combined venous and arterial etiology.
Methods: Seven consenting participants presenting with mixed etiology leg ulcers participated in this study. Microvascular flow and pulsatility was measured in the wound bed and in the skin surrounding the wound using laser speckle contrast imaging.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!