Isosterism is commonly used in drug discovery and development to address stability, selectivity, toxicity, pharmacokinetics, and efficacy issues. A series of 14-O-substituted naltrexone derivatives were identified as potent mu opioid receptor (MOR) antagonists with improved selectivity over the kappa opioid receptor (KOR) and the delta opioid receptor (DOR), compared to naltrexone. Since esters are not metabolically very stable under typical physiological conditions, their corresponding amide analogs were thus synthesized and biologically evaluated. Unlike their isosteres, most of these novel ligands seem to be dually selective for the MOR and the KOR over the DOR. The restricted flexibility of the amide bond linkage might be responsible for their altered selectivity profile. However, the majority of the 14-N-substituted naltrexone derivatives produced marginal or no MOR stimulation in the (35)S-GTP[γS] assay, which resembled their ester analogs. The current study thus indicated that the 14-substituted naltrexone isosteres are not bioisosteres since they have distinctive pharmacological profile with the regard to their opioid receptor binding affinity and selectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690547 | PMC |
http://dx.doi.org/10.1016/j.bmcl.2013.05.027 | DOI Listing |
PLoS Pathog
January 2025
Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
Mitochondria, recognized as the "powerhouse" of cells, play a vital role in generating cellular energy through dynamic processes such as fission and fusion. Viruses have evolved mechanisms to hijack mitochondrial function for their survival and proliferation. Here, we report that infection with the swine arterivirus porcine reproductive and respiratory syndrome virus (PRRSV), manipulates mitochondria calcium ions (Ca2+) to induce mitochondrial fission and mitophagy, thereby reprogramming cellular energy metabolism to facilitate its own replication.
View Article and Find Full Text PDFAnesthesiology
January 2025
Takeda Development Center Americas, Inc., Lexington, MA, USA.
Background: Orexin neuropeptides help regulate sleep/wake states, respiration, and pain. However, their potential role in regulating breathing, particularly in perioperative settings, is not well understood. TAK-925 (danavorexton), a novel, orexin receptor 2-selective agonist, directly activates neurons associated with respiratory control in the brain and improves respiratory parameters in rodents undergoing fentanyl-induced sedation.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, United States.
We have developed a method that uses energy landscapes of unbound and bound ligands to compute reorganization free energies for end-point binding free-energy calculations. The method is applied to our previous simulations of fentanyl derivatives bound to the μ opioid receptor in different orientations. Whereas the mean interaction energy provides an ambiguous ranking of binding poses, interaction entropy and ligand reorganization strongly penalize geometric decoys such that native poses observed in CryoEM structures are best ranked.
View Article and Find Full Text PDFPain is a dynamic and nonlinear experience shaped by injury and contextual factors, including expectations of future pain or relief . While µ opioid receptors are central to the analgesic effects of opioid drugs, the endogenous opioid neurocircuitry underlying pain and placebo analgesia remains poorly understood. The ventrolateral column of the posterior periaqueductal gray is a critical hub for nociception and endogenous analgesia mediated by opioid signaling .
View Article and Find Full Text PDFIntroduction: Mu-opioid receptors (MORs) are G-coupled protein receptors with a high affinity for both endogenous and exogenous opioids. MORs are widely expressed in the central nervous system (CNS), peripheral organs, and the immune system. They mediate pain and reward and have been implicated in the pathophysiology of opioid, cocaine, and other substance use disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!