Twelve dogs were sorted into 3 equal groups, and the in-situ right latissimus dorsi muscle of each dog was stimulated via its motor nerve for a period of 6 weeks. The resulting isotonic contractions were used to pump fluid in an implanted, 2-chambered, compressible pouch system. Three methods of electrical stimulation were used: (a) continuous 2 sec-1 single pulses that caused muscle twitching, (b) a 250 msec train of pulses (36 sec-1) that caused tetanic muscle contractions and was repeated every 2 sec for 15 min followed by a 15 min period of rest, and (c) alternating 15 min periods of the above 2 stimulation methods to cause alternating twitch and tetanic contractions. The 2 sec-1 twitch stimulation and the combined twitch/tetanic stimulation methods resulted in a 100% conversion to fatigue-resistant fibers within 6 weeks. Standardized muscle function tests were performed weekly. With the twitch stimulation (Method 1), the time to fatigue increased from 9 to 116 min (p less than 0.001), but fluid pumping ability of the muscle decreased substantially from 0.25 to 0.14 liters min-1 (p less than 0.05). With the intermittent tetanic stimulation (Method 2), the fatigue resistance increased only slightly from 7 to 11 minutes (p = NS), and pumping ability was unchanged. With the combined (twitch-tetanic) stimulation (Method 3), the time to fatigue increased from 9 to 107 min (p less than 0.001), and the pumping ability did not significantly change from 0.20 to 0.22 liters min-1 (p = NS). These results suggest that a combined electrical stimulation method which produces both twitches and tetanic contractions can achieve rapid fiber conversion and increased fatigue resistance without loss of muscle strength.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02368440DOI Listing

Publication Analysis

Top Keywords

stimulation method
16
electrical stimulation
12
pumping ability
12
stimulation
9
three methods
8
methods electrical
8
stimulation methods
8
tetanic contractions
8
twitch stimulation
8
method time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!