Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Regioregular polythiophenes containing an optically active substituent in the third position of the thiophene ring, head-to-tail poly(3-[2-((S)-1-methyloctyloxy)ethyl]thiophene)s (HT-P(S)MOETs), were synthesized using highly reactive zinc. For comparison, HT-P(R)MOET and achiral HT-P(±)MOET also were synthesized from R-type monomers and racemic monomers, respectively. The HT-PMOET possessed greater than 95% head-to-tail coupling with a weight-average molecular weight (Mw) between 1.96 × 10(4) and 2.94 × 10(4). The polymers were characterized using (1)H and (13)C NMR, optical rotatory power measurements, circular dichroism (CD), and UV-vis spectroscopy. X-ray diffraction patterns of the cast films demonstrated that regioregular HT-PMOET possessed a strong tendency to self-assemble into highly ordered, crystalline structures. The HT-P(S)MOET and HT-P(R)MOET showed strong Cotton effects, while HT-P(±)MOET showed very weak Cotton effects. The presence of a circular dichroism effect indicated that the side chain chirality induced optical activity in poly(thiophene) main chains. The monolayer formation of HT-PMOET spread on the water surface was characterized using a pressure-area (π-A) isotherm. The molecular areas of HT-P(S)MOET and HT-P(R)MOET molecules on the water surface were 33.5 and 32.9 Å(2), respectively, at 10 °C, which were larger than that of HT-P(±)MOET (27.9 Å(2)), suggesting that optically active HT-PMOET expanded because of the chiral repulsion between side chains. Multilayer films of HT-PMOET were prepared by repeating horizontal deposition of the monolayer on the water surface. The multilayer films of optically active HT-PMOET obtained showed stronger Cotton effects than did the cast films. In addition, electrical conductivities of HT-PMOET multilayer films were superior to those of spin-coated films. Head-to-tail poly(3-[2-((S)-1-methylpropyloxy)ethyl]thiophene) (HT-P(S)MPET), which contained shorter side chain lengths compared to HT-P(S)MOET, also was synthesized. The CD intensities of HT-P(S)MPET multilayer films were smaller than those of HT-P(S)MOET multilayer films, suggesting that the optically active side-chain length is critically important to the optically active self-assembly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la4015527 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!