Accumulating evidence within the last two decades indicates the association between cardiovascular disease (CVD) and chronic inflammatory state. Under normal conditions fibrin clots are gradually degraded by the fibrinolytic enzyme system, so no permanent insoluble deposits remain in the circulation. However, fibrinolytic therapy in coronary and cerebral thrombosis is ineffective unless it is installed within 3-5 hours of the onset. We have shown that trivalent iron (FeIII) initiates a hydroxyl radical-catalyzed conversion of fibrinogen into a fibrin-like polymer (parafibrin) that is remarkably resistant to the proteolytic dissolution and thus promotes its intravascular deposition. Here we suggest that the persistent presence of proteolysis-resistant fibrin clots causes chronic inflammation. We study the effects of certain amphiphilic substances on the iron- and thrombin-induced fibrinogen polymerization visualized using scanning electron microscopy. We argue that the culprit is an excessive accumulation of free iron in blood, known to be associated with CVD. The only way to prevent iron overload is by supplementation with iron chelating agents. However, administration of free radical scavengers as effective protection against persistent presence of fibrin-like deposits should also be investigated to contribute to the prevention of cardiovascular and other degenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763776 | PMC |
http://dx.doi.org/10.2174/15672026113109990016 | DOI Listing |
PLoS One
January 2025
Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan.
Background: Global populations are aging, and the numbers of stroke survivors is increasing. Consequently, the need for caregiver support has increased. Because of this and demographic and socioeconomic changes, foreign caregivers are increasingly in demand in many developed countries.
View Article and Find Full Text PDFBackground: Poststroke depression (PSD) is a highly prevalent and serious mental health condition affecting a significant proportion of stroke survivors worldwide. While its exact causes remain under investigation, managing PSD presents a significant challenge.
Aim: This study aimed to evaluate the prevalence and predictors of depression among Bangladeshi stroke victims.
Proc Natl Acad Sci U S A
January 2025
Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037.
is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892.
Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!