NO is a free radical with pleiotropic functions. We have shown earlier that NO induces a population of CD4(+)CD25(+)Foxp3(-) regulatory T cells (NO-Tregs) that suppress the functions of CD4(+)CD25(-) effector T cells in vitro and in vivo. We report in this study an unexpected finding that NO-Tregs suppressed Th17 but not Th1 cell differentiation and function. In contrast, natural Tregs (nTregs), which suppressed Th1 cells, failed to suppress Th17 cells. Consistent with this observation, NO-Tregs inhibited the expression of retinoic acid-related orphan receptor γt but not T-bet, whereas nTregs suppressed T-bet but not retinoic acid-related orphan receptor γt expression. The NO-Treg-mediated suppression of Th17 was partially cell contact-dependent and was associated with IL-10. In vivo, adoptively transferred NO-Tregs potently attenuated experimental autoimmune encephalomyelitis. The disease suppression was accompanied by a reduction of Th17, but not Th1 cells in the draining lymph nodes, and a decrease in the production of IL-17, but an increase in IL-10 synthesis. Our results therefore demonstrate the differential suppressive function between NO-Tregs and nTregs and indicate specialization of the regulatory mechanism of the immune system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785138 | PMC |
http://dx.doi.org/10.4049/jimmunol.1202580 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!