Lactation is the most energy-demanding phase of mammalian reproduction, and lactation performance may be affected by events during pregnancy. For example, food intake may be limited in late pregnancy by competition for space in the abdomen between the alimentary tract and fetuses. Hence, females may need to compensate their energy budgets during pregnancy by reducing activity and lowering body temperature. We explored the relationships between energy intake, body mass, body temperature and physical activity throughout pregnancy in the MF1 mouse. Food intake and body mass of 26 females were recorded daily throughout pregnancy. Body temperature and physical activity were monitored every minute for 23 h a day by implanted transmitters. Body temperature and physical activity declined as pregnancy advanced, while energy intake and body mass increased. Compared with a pre-mating baseline period, mice increased energy intake by 56% in late pregnancy. Although body temperature declined as pregnancy progressed, this served mostly to reverse an increase between baseline and early pregnancy. Reduced physical activity may compensate the energy budget of pregnant mice but body temperature changes do not. Over the last 3 days of pregnancy, food intake declined. Individual variation in energy intake in the last phase of pregnancy was positively related to litter size at birth. As there was no association between the increase in body mass and the decline in intake, we suggest the decline was not caused by competition for abdominal space. These data suggest overall reproductive performance is probably not constrained by events during pregnancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.078410 | DOI Listing |
Curr Biol
January 2025
Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
Body temperature regulation in endotherms requires warming the body when ambient temperatures are low and cooling the body when they are high. Now, neural circuitry that can achieve the opposite has been identified - a phenomenon called thermoregulatory inversion.
View Article and Find Full Text PDFThe current study investigated if skin temperature (Tsk) measurement through infrared thermography could reflect the accumulation of training load during the preparatory period of a professional volleyball team. Sixteen athletes (20.1 ± 3.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China.
Acting as the interface between the human body and its environment, clothing is indispensable in human thermoregulation and even survival under extreme environmental conditions. Development of clothing textiles with prolonged passive temperature-adaptive thermoregulation without external energy consumption is much needed for protection from thermal stress and energy saving, but very challenging. Here, a temperature-adaptive thermoregulation filament (TATF) consisting of thermoresponsive vacuum cavities formed by the temperature-responsive volume change of the material confined in the cellular cores of the filament is proposed.
View Article and Find Full Text PDFFront Neurosci
December 2024
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
Hibernation, an adaptive mechanism to extreme environmental conditions, is prevalent among mammals. Its main characteristics include reduced body temperature and metabolic rate. However, the mechanisms by which hibernating animals re-enter deep sleep during the euthermic phase to sustain hibernation remain poorly understood.
View Article and Find Full Text PDFMed Sci Sports Exerc
January 2025
Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY.
Introduction: Circadian rhythms are responsible for physiological and behavioral processes coordinated in a 24-hour cycle. We investigated whether untimed, long-term voluntary wheel access mitigated circadian disruption and facilitated re-entrainment. Methods: Thirty-four C57Bl/6 J mice (n = 21 males, n = 14 females) were used in this experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!