Mass isotopomer analysis of metabolically labeled nucleotide sugars and N- and O-glycans for tracing nucleotide sugar metabolisms.

Mol Cell Proteomics

Disease Glycomics Team, Systems Glycobiology Research Group, Global Research Cluster, RIKEN Max Plank Joint Research Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

Published: September 2013

AI Article Synopsis

  • - Nucleotide sugars, especially UDP-GlcNAc, are crucial for glycan biosynthesis and are influenced by metabolic states in diseases like cancer and diabetes.
  • - The authors developed a tracing method using (13)C6-glucose and (13)C2-glucosamine to analyze UDP-GlcNAc's synthesis and utilization, finding variations in labeling efficiencies between different cell types, particularly between pancreatic insulinoma and hepatoma cells.
  • - Insulinoma cells showed lower labeling efficiencies for sialic acids and complex N-glycans, indicating a metabolic flow that impacts sialylation, while no significant difference in secreted hyaluronic acids was observed among cell lines.

Article Abstract

Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using (13)C6-glucose and (13)C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS. Metabolic labeling of cultured cells with (13)C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a (13)C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells. Using (13)C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769324PMC
http://dx.doi.org/10.1074/mcp.M112.027151DOI Listing

Publication Analysis

Top Keywords

insulinoma cells
12
isotopomer analysis
8
nucleotide sugars
8
udp-glcnac synthesis
8
labeling efficiency
8
cells
5
mass isotopomer
4
analysis
4
analysis metabolically
4
metabolically labeled
4

Similar Publications

Introduction And Importance: Insulinomas are rare pancreatic neuroendocrine neoplasms with an incidence of one to four cases per million annually and a 5 % to 10 % association with hereditary multiple endocrine neoplasia type-1. While most insulinomas are benign and well-encapsulated, approximately 6 % may have malignant potential. Intraoperative localization remains a vital component of treatment, often facilitated by modern imaging techniques like intraoperative ultrasound and fluorescence modalities.

View Article and Find Full Text PDF

Hypoglycemia in non-diabetic individuals is a rare but critical condition that often signals an underlying pathology. Insulinoma, a rare neuroendocrine tumor of the pancreas, is a key differential diagnosis. As the most common functional pancreatic neuroendocrine tumors, insulinomas originate from pancreatic islet cells and are predominantly benign.

View Article and Find Full Text PDF

[Salidroside alleviates high glucose and ethanol-induced pyroptosis in insulinoma cells].

Zhongguo Zhong Yao Za Zhi

November 2024

School of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000, China Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine Shiyan 442000, China Department of Pharmacy, Taihe Hospital, Hubei University of Medicine Shiyan 442000, China.

This study established a pyroptosis injury model by stimulating insulinoma cells(INS-1) of rats with high glucose(HG) and observed the impact of additional ethanol(ET) exposure on cell pyroptosis, as well as the intervention effect of salidroside(SAL). INS-1 cells were cultured and divided into a normal control group(NG), an HG group, an HG + ET(100 mmol·L~(-1)) group, and an HG + ET + SAL(1-100 μmol·L~(-1)) group. After 72 hours of treatment, cell viability was assessed using the cell counting kit-8(CCK-8) assay.

View Article and Find Full Text PDF

In the past 2-3 decades, numerous attempts have been made to create an insulin-secreting β cell line that maintains normal insulin secretion. However, primary β cell cultures have finite life and, therefore, cannot be used for long-term experiments. The most widely used insulin-secreting cell lines are Insulinoma-1, rat insulinoma cell line, hamster pancreatic β cell line, mouse insulinoma, and β tumor cell line.

View Article and Find Full Text PDF
Article Synopsis
  • Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) can be either hormone-secreting or non-secreting, have serious health implications, and an average survival of 75-124 months.
  • Research shows that key genes involved in the tumor's development, especially epigenetic regulators like MEN1, DAXX, and ATRX, are often mutated, but their effects are not well understood.
  • The calcium sensing receptor (CaSR) is significantly reduced in GEP-NETs, potentially due to DNA methylation and chromatin modifications, suggesting it functions as a tumor suppressor by inhibiting cell growth in pancreatic NETs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!