Mechanisms mediating spinal and bulbar muscular atrophy: investigations into polyglutamine-expanded androgen receptor function and dysfunction.

Front Neurol

Lady Davis Institute for Medical Research, Jewish General Hospital Montreal, QC, Canada ; Department of Medicine, McGill University Montreal, QC, Canada ; Department of Human Genetics, McGill University Montreal, QC, Canada.

Published: May 2013

Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease), a late-onset neuromuscular disorder, is caused by expansion of the polymorphic polyglutamine tract in the androgen receptor (AR). The AR is a ligand-activated transcription factor, but plays roles in other cellular pathways. In SBMA, selective motor neuron degeneration occurs in the brainstem and spinal cord, thus the causes of neuronal dysfunction have been studied. However, pathogenic pathways in muscles may also be involved. Cultured cells, fly and mouse models are used to study the molecular mechanisms leading to SBMA. Both the structure of the polyglutamine-expanded AR (polyQ AR) and its interactions with other proteins are altered relative to the normal AR. The ligand-dependent translocation of the polyQ AR to the nucleus appears to be critical, as are interdomain interactions. The polyQ AR, or fragments thereof, can form nuclear inclusions, but their pathogenic or protective nature is unclear. Other data suggests soluble polyQ AR oligomers can be harmful. Post-translational modifications such as phosphorylation, acetylation, and ubiquitination influence AR function and modulate the deleterious effects of the polyQ AR. Transcriptional dysregulation is highly likely to be a factor in SBMA; deregulation of non-genomic AR signaling may also be involved. Studies on polyQ AR-protein degradation suggest inhibition of the ubiquitin proteasome system and changes to autophagic pathways may be relevant. Mitochondrial function and axonal transport may also be affected by the polyQ AR. Androgens, acting through the AR, can be neurotrophic and are important in muscle development; hence both loss of normal AR functions and gain of novel harmful functions by the polyQ AR can contribute to neurodegeneration and muscular atrophy. Thus investigations into polyQ AR function have shown that multiple complex mechanisms lead to the initiation and progression of SBMA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654311PMC
http://dx.doi.org/10.3389/fneur.2013.00053DOI Listing

Publication Analysis

Top Keywords

muscular atrophy
12
polyq
9
spinal bulbar
8
bulbar muscular
8
atrophy investigations
8
androgen receptor
8
sbma
5
mechanisms mediating
4
mediating spinal
4
investigations polyglutamine-expanded
4

Similar Publications

There are limited studies on the phase angle (PhA) and sarcopenic obesity (SO) in the Chinese population. This study aimed to establish 50 kHz-PhA reference data for SO population, and to evaluate the correlation between 50 kHz-PhA and SO. A total of 10,312 participants including 5415 men and 4897 women were enrolled in this study, and their resistance and reactance at 50 kHz, and body composition parameters were measured a segmental multifrequency bioelectrical impedance analysis device (InBody 720).

View Article and Find Full Text PDF

Dihydroartemisinin ameliorates skeletal muscle atrophy in the lung cancer cachexia mouse model.

J Cancer Res Ther

December 2024

Department of Medical Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, People's Republic of China.

Introduction: Cancer cachexia (CC) is characterized by weight loss with specifically reduced skeletal muscles and adipose tissues in patients with late-stage cancer. Dihydroartemisinin (DHA), an effective antimalarial derivative of artemisinin, has been demonstrated to have anti-inflammatory and antitumor properties.

Materials And Methods: This study examined the effects of DHA on the Lewis lung carcinoma (LLC)-induced CC mouse model.

View Article and Find Full Text PDF

Hirayama disease, also known as non-progressive juvenile spinal muscular atrophy of the upper limbs, brachial monomelic amyotrophy, or benign focal atrophy, affects the C7 D1 myotomes; an electromyogram (EMG) shows neurogenic damage in the C7-C8-T1 territories. It causes weakness and amyotrophy of the distal upper limb. Although it usually occurs on one side only, bilateral symmetric cases of Hirayama disease have occasionally been described.

View Article and Find Full Text PDF

Background: Falls and sarcopenia are significant public health issues in Vietnam. Despite muscle strength being a critical predictor for these conditions, reference data on muscle strength within the Vietnamese population are lacking.

Purpose: To establish the reference ranges for muscle strength among Vietnamese individuals.

View Article and Find Full Text PDF

Background: Adeno-associated virus (AAV) 8 and 9 are in clinical trials for treating neuromuscular diseases such as Duchenne muscular dystrophy (DMD). Muscle consists of myofibres of different types and sizes. However, little is known about the fibre type and fibre size tropism of AAV in large mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!