Neural stem/progenitor cells (NSPCs) generate new neurons throughout life in the mammalian hippocampus. Newborn granule cells mature over several weeks to functionally integrate into the pre-existing neural circuitry. Even though an increasing number of genes that regulate neuronal polarization and neurite extension have been identified, the cellular mechanisms underlying the extension of neurites arising from newborn granule cells remain largely unknown. This is mainly because of the current lack of longitudinal observations of neurite growth within the endogenous niche. Here we used a novel slice culture system of the adult mouse hippocampal formation combined with in vivo retroviral labeling of newborn neurons and longitudinal confocal imaging to analyze the mode and velocity of neurite growth extending from immature granule cells. Using this approach we show that dendritic processes show a linear growth pattern with a speed of 2.19±0.2 μm per hour, revealing a much faster growth dynamic than expected by snapshot-based in vivo time series. Thus, we here identified the growth pattern of neurites extending from newborn neurons within their niche and describe a novel technology that will be useful to monitor neuritic growth in physiological and disease states that are associated with altered dendritic morphology, such as rodent models of epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.091249 | DOI Listing |
Front Cell Dev Biol
January 2025
Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy.
Introduction: Endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) modulate a plethora of physiological processes for the maintenance of homeostasis in different cellular subsets at both intra and extracellular level.
Materials And Methods: In this frame, the extracellular supplementation of recombinant human (rh) ERAP1 and ERAP2 (300 ng/ml) was used to mimic the effect of stressor-induced secretion of ERAPs on neutrophils isolated from 5 healthy subjects. In these cells following 3 h or 24 h rhERAP stimulation by Western Blot, RT-qPCR, Elisa, Confocal microscopy, transwell migration assay, Oxygraphy and Flow Cytometry we assessed: i) rhERAP internalization; ii) activation; iii) migration; iv) oxygen consumption rate; v) reactive oxygen species (ROS) accumulation; granule release; vi) phagocytosis; and vii) autophagy.
J Neurosci
January 2025
Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
GABAergic neurons in basal forebrain (BF) nuclei project densely to all layers of the mouse main olfactory bulb (OB), the first relay in odor information processing. However, BF projection neurons are diverse and the contribution of each subtype to odor information processing is not known. In the present study, we used retrograde and anterograde tracing methods together with whole-brain light-sheet analyses, patch-clamp recordings coupled with optogenetic and chemogenetic approaches during spontaneous odor discrimination, and go/no-go odor discrimination/learning tests to characterize the synaptic targets in the OB of BF calretinin-expressing (CR+) GABAergic cells and to reveal their functional implications.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
Real-time monitoring of the dynamics of cytosolic RNA-protein condensates, termed stress granules (SGs), is vital for understanding their biological roles in stress response and related disease treatment but is challenging due to the lack of simple and accurate methods. Compared with protein visualization that requires complex transfection procedures, direct RNA labeling offers an ideal alternative for tracking SG dynamics in living cells. Here, we propose a novel molecular design strategy to construct a near-infrared RNA-specific fluorescent probe () for tracking SGs in living cells.
View Article and Find Full Text PDFElife
January 2025
Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, United States.
Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MB). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MB cases and that expression is uniquely upregulated in infantile MB tumors.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Background: The Hippo signaling pathway involves a kinase cascade that controls phosphorylation of the effector proteins YAP and TAZ, leading to regulation of cell growth, tissue homeostasis, and apoptosis. Morusin, a compound extracted from Morus alba, has shown potential in cancer therapy by targeting multiple signaling pathways, including the PI3K/Akt/mTOR, JAK/STAT, MAPK/ERK, and apoptosis pathways. This study explores the effects of morusin on YAP activation and its implications for apoptosis resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!