It is well documented that the ethynyl group can act as a hydrogen-bond donor via its acidic C-H, and as a hydrogen-bond acceptor via the triple-bond π-density. Using the Cambridge Structural Database (CSD), it is shown that C-C≡C-H forms hydrogen bonds to N, O, S or halogens in 74% of structures in which these bonds can form. Additionally, the ethynyl group forms C-H···π interactions with itself or with phenyl groups in 23% of structures and accepts hydrogen bonds from O-H, N-H or C(aromatic)-H in 47% of structures where such bonds are possible. Overall, C-C≡C-H acts as a donor or acceptor in 87% of structures in which it occurs. These propensities for hydrogen-bond formation have been determined using quite tight geometrical constraints, and many more ethynyl groups form interactions with only slight relaxations of these constraints. We conclude that the ethynyl group makes crucial contributions to molecular aggregation in crystal structures, and this is exemplified by hydrogen-bond predictions for specific structures made using the statistical propensity tool now available in CSD system software.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2052519213008208 | DOI Listing |
Chembiochem
January 2025
Iryo Sosei University: Iryo Sosei Daigaku, Life Science and Engineering, JAPAN.
Vitamin D receptor (VDR) plays a critical role in regulating multiple biological processes, including bone metabolism and cell differentiation, by mediating transcriptional activation in response to ligand binding. We have constructed an environmentally fluorescent probe 2 for VDR to facilitate real-time observation of its ligand-dependent conformational changes in living cells. This probe 2 was synthesized by introducing a dansyl fluorophore via an ethynyl group at the C11 position of 1α,25(OH)2D3.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou Province, China.
Chronic fluorosis is often accompanied by neurological symptoms, leading to attention, memory and learning ability decline and causing tension, anxiety, depression, and other mental symptoms. In the present study, we analyzed the molecular mechanisms of SIRT1-BDNF regulation of PI3K-AKT, MAPK, and FOXO1A in F-treated BV2 cells. The cytotoxic effect of sodium fluoride (NaF) on BV2 cells was assessed using Cell Counting Kit-8 (CCK-8), crystal violet, and 5-ethynyl-2'-deoxyuridine (EdU) staining.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585, Japan.
Divergent synthesis of triazoles was achieved using newly designed platform molecules possessing azide, alkyne, and fluorosulfonyl moieties. Consecutive conjugations by the sulfur(VI) fluoride exchange and following consecutive triazole formations allowed us to prepare a wide variety of bis(triazole)s by virtue of selective transformations. One-pot triple-click assembly of easily accessible modules led to the facile synthesis of middle-molecular-weight triazoles with various functional moieties.
View Article and Find Full Text PDFPharmacol Biochem Behav
January 2025
Department of Psychology, Arizona State University, Tempe, AZ 85257, United States of America. Electronic address:
Glutamatergic signaling is one of the primary targets of actions of alcohol in the brain, and dysregulated excitatory transmission in the prefrontal cortex (PFC) may contribute problematic drinking and relapse. A prominent component of glutamate signaling is the type 5 metabotropic glutamate (mGlu5) receptor. However, little is known about the role of this receptor type in subregions of the PFC that regulate either alcohol intake or alcohol-seeking behavior.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!