Purpose: Ribonucleotide reductase subunit M2 (RRM2) plays an active role in tumor progression. Recently, we reported that depletion of RRM2 by systemic delivery of a nanoparticle carrying RRM2-specific siRNA suppresses head and neck tumor growth. The aim of this study is to clarify the underlying mechanism by which RRM2 depletion inhibits tumor growth.
Experimental Design: siRNA-mediated gene silencing was carried out to downregulate RRM2. Immunoblotting, reverse-transcriptase PCR, confocal microscopy, tissue fractionation, gene overexpression and knockdown were employed to analyze critical apoptosis signaling. Conventional immunohistochemistry and quantum dot-based immunofluorescence were applied to detect RRM2 and Bcl2 expression and localization in tissue samples from patients and mice.
Results: Knockdown of RRM2 led to apoptosis through the intrinsic pathway in head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) cell lines. We showed that Bcl-2 is a key determinant controlling apoptosis, both in vitro and in vivo, and that RRM2 depletion significantly reduces Bcl-2 protein expression. We observed that RRM2 regulates Bcl-2 protein stability, with RRM2 suppression leading to increased Bcl-2 degradation, and identified their colocalization in HNSCC and NSCLC cells. In a total of 50 specimens each from patients with HNSCC and NSCLC, we identified the colocalization of Bcl-2 and RRM2 and found a significant positive correlation between their expression in HNSCC (R = 0.98; P < 0.0001) and NSCLC (R = 0.92; P < 0.0001) tumor tissues.
Conclusions: Our novel findings add to the knowledge of RRM2 in regulating expression of the antiapoptotic protein Bcl-2 and reveal a critical link between RRM2 and Bcl-2 in apoptosis signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747783 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-13-0073 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!