This study investigated the pathway underlying the antitumor activity of telomelysin, a telomerase-dependent, replication-selective oncolytic adenovirus, in soft tissue sarcoma cells. Treatment with telomelysin alone resulted in simultaneous induction of apoptosis and autophagy, whereas cotreatment with telomelysin and 3-methyladenine significantly reduced cell viability and increased apoptosis and the cellular ATP level compared to treatment with telomelysin alone, indicating that telomelysin-mediated autophagy is a death-protective but not death-promoting process. Cotreatment with Z-Val-Ala-Asp-CH2F significantly increased cellular ATP depletion compared to telomelysin-alone treatment while inhibiting telomelysin-induced apoptosis and having no significant effect on cell viability, indicating that it promotes transition from apoptotic to necrotic cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656541PMC
http://dx.doi.org/10.1111/cas.12208DOI Listing

Publication Analysis

Top Keywords

antitumor activity
8
cell death
8
soft tissue
8
tissue sarcoma
8
sarcoma cells
8
treatment telomelysin
8
cell viability
8
cellular atp
8
telomelysin
5
telomelysin potent
4

Similar Publications

Autophagy-targeted Pt(IV) agents: a new horizon in antitumor drug development.

Dalton Trans

January 2025

Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.

Pt(IV) complexes as prodrugs of Pt(II) drugs exhibit numerous advantages such as enhanced stability, reduced toxicity, increased oral bioavailability, and efficacy in overcoming the drug resistance of Pt(II) compounds, which underscore their significant potential in the advancement of novel Pt anticancer agents. Furthermore, protective autophagy is pivotal in sustaining tumor cell homeostasis and modulating the tumor microenvironment (TME), thereby representing a critical target for the development of antitumor drugs. Specific inhibition or activation of autophagy during chemotherapy would break the internal homeostasis in the TME and increase antitumor activities.

View Article and Find Full Text PDF

Selective Degradation of TEADs by a PROTAC Molecule Exhibited Robust Anticancer Efficacy In Vitro and In Vivo.

J Med Chem

January 2025

Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Province 750004, China.

Genetic mutations in components of the Hippo pathway frequently lead to the aberrant activation of TEADs, which is often associated with cancer. Consequently, TEADs have been actively pursued as therapeutic targets for diseases driven by TEAD overactivation. In this study, we report two series of TEAD PROTACs based on CRBN binders and VHL binders.

View Article and Find Full Text PDF

Camptothecin (CPT), a chemotherapeutic agent, demonstrates significant potential in cancer therapy. However, as a drug, CPT molecule suffers from poor water solubility, limited bioavailability, and insufficient immune response. Herein, we construct CPT nanofibers (CNF) with a right-handed chiral property via supramolecular self-assembly, which significantly overcomes the solubility barriers associated with bioavailability and improves tumor immune prognosis.

View Article and Find Full Text PDF

Most of the triple negative phenotype or basal-like molecular subtypes of breast cancers are associated with aggressive clinical behaviour and show poor disease prognosis. Current treatment options are constrained, emphasizing the need for novel combinatorial therapies for this particular tumor subtype. Our group has demonstrated that functionally active p21 activated kinase 1 (PAK1) exhibits significantly higher expression levels in clinical triple negative breast cancer (TNBC) samples compared to other subtypes, as well as adjacent normal tissues.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second leading cause of cancer-related deaths among American men. The development of metastatic castration resistant PCa (mCRPC) is the current clinical challenge. Antiandrogens such as Enzalutamide (ENZ) are commonly used for CRPC treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!