Thirteen compounds were isolated from the leaves of Rhododendron rubiginosum var. rubiginosum by various chromatographic techniques. On the basis of spectroscopic data, their structures were elucidated as 3,9-dihydroxy-megastigma-5-ene (1), 3 beta-hydroxy-5alpha ,6 alpha-epoxy-7-megastigmen-9-one (2), loliolide (3), ursolic acid(4), 2 alpha, 3 beta-dihydroxy-urs-12-en-28-oic acid (5), 2 alpha, 3 beta,23-trihydroxy-urs-12-en-28-oic acid (6), 7,9-dimethoxyrhododendrol (7), 7-methoxyrhododendrol (8), zingerone (9), isofraxidin (10), scopoletin (11), (+)-pinoresinol (12) and 3'-O-demethylepipinorisenol (13). All compounds were isolated from this plant for the first time, and compounds 1-3, 7-9, and 11-13 were isolated from the genus Rhododendron for the first time.
Download full-text PDF |
Source |
---|
Physiol Plant
January 2025
Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA.
The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Jiyang College, Zhejiang A&F University, Zhuji 311800, China.
(), a significant ornamental plant species, is adversely affected by the severe soil heavy metal pollution resulting from rapid industrialization, particularly in terms of its growth environment. Cadmium (Cd), a representative heavy metal pollutant, poses a significant threat to plant growth and photosynthetic physiology. Despite the importance of understanding Cd stress resistance in rhododendrons, research in this area is limited.
View Article and Find Full Text PDFPlant Dis
January 2025
Guizhou University, Guizhou University, Guiyang, Guiyang, Guizhou, China, 550025;
During a field study in the Baili Azalea Forest Area in Guizhou Province, China (27°12'N, 105°48'E) between May and July 2023, symptoms of leaf spot were observed on Franch. The incidence of leaf spot on leaves was about 12% in a field of 1 hm2, significantly reducing their ornamental and economic value. The affected leaves bore irregular, grey-white lesions with distinct dark brown borders, accompanied by black conidiomata.
View Article and Find Full Text PDFSci Rep
January 2025
Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
Phytotoxic air pollutants such as atmospheric nitrogen dioxide (NO) are among the major stresses affecting tree photosynthesis in urban areas. We clarified the relationship between NO concentrations and photosynthetic function for three major urban trees, Prunus × yedoensis, Rhododendron pulchrum, and Ginkgo biloba, planted in Kyoto and surrounding cities, combining our published data and new data collected from 2020 to 2023. High NO increased long-term water use efficiency for all species.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
Multi-omics studies have shown that strigolactone modulates phenolic acid accumulation in the leaves of R. chrysanthum and can enable it to cope with UV-B stress. UV-B stress is an abiotic stress that plants will inevitably suffer during growth and can seriously affect the normal physiological state of plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!