The currently-accepted dogma when analysing human Alu transposable elements is that 'young' Alu elements are found in low GC regions and 'old' Alus in high GC regions. The correlation between high GC regions and high gene frequency regions make this observation particularly difficult to explain. Although a number of studies have tackled the problem, no analysis has definitively explained the reason for this trend. These observations have been made by relying on the subfamily as a proxy for age of an element. In this study, we suggest that this is a misleading assumption and instead analyse the relationship between the taxonomic distribution of an individual element and its surrounding GC environment. An analysis of 103906 Alu elements across 6 human chromosomes was carried out, using the presence of orthologous Alu elements in other primate species as a proxy for age. We show that the previously-reported effect of GC content correlating with subfamily age is not reflected by the ages of the individual elements. Instead, elements are preferentially lost from areas of high GC content over time. The correlation between GC content and subfamily may be due to a change in insertion bias in the young subfamilies. The link between Alu subfamily age and GC region was made due to an over-simplification of the data and is incorrect. We suggest that use of subfamilies as a proxy for age is inappropriate and that the analysis of ortholog presence in other primate species provides a deeper insight into the data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661076 | PMC |
http://dx.doi.org/10.7717/peerj.78 | DOI Listing |
J Diabetes Investig
January 2025
Department of Medical Sciences, Shahid Beheshti University, Tehran, Iran.
Aims: This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract.
Methods: This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP.
Nat Commun
January 2025
Technion-Israel Institute of Technology, Faculty of Biology, Emerson building, Haifa, Israel.
Long non-coding RNAs (lncRNAs) are pivotal regulators of cellular processes. Here we reveal an interaction between the lncRNA NORAD, noted for its role in DNA stability, and the immune related transcription factor STAT3 in embryonic and differentiated human cells. Results from NORAD knockdown experiments implicate NORAD in facilitating STAT3 nuclear localization and suppressing antiviral gene activation.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan.
Genomic variants causing abnormal splicing play important roles in genetic disorders and cancer development. Among them, variants that cause the formation of novel splice-sites (splice-site creating variants, SSCVs) are particularly difficult to identify and often overlooked in genomic studies. Additionally, these SSCVs are frequently considered promising candidates for treatment with splice-switching antisense oligonucleotides (ASOs).
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, Vietnam.
The autonomous and active Long-Interspersed Element-1 (LINE-1, L1) and the non-autonomous Alu retrotransposon elements, contributing to 30% of the human genome, are the most abundant repeated sequences. With more than 90% of their sequences being methylated in normal cells, these elements undeniably contribute to the global DNA methylation level and constitute a major part of circulating-cell-free DNA (cfDNA). So far, the hypomethylation status of LINE-1 and Alu in cellular and extracellular DNA has long been considered a prevailing hallmark of ageing-related diseases and cancer.
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!