Gastroesophageal reflux disease (GERD) is the main etiological factor behind the recent rapid increase in the incidence of esophageal adenocarcinoma. During reflux, esophageal cells are exposed to bile at low pH resulting in cellular damage and inflammation, which are known to facilitate cancer development. In this study, we investigated the regulation of p73 isoform, ΔNp73α, in the reflux condition. Previous studies have reported that ΔNp73 exhibits anti-apoptotic and oncogenic properties through inhibition of p53 and p73 proteins. We found that direct exposure of esophageal cells to bile acids in an acidic environment alters the phosphorylation of ΔNp73, its subcellular localization and increases ΔNp73 protein levels. Upregulation of ΔNp73 was also observed in esophageal tissues collected from patients with GERD and Barrett's metaplasia, a precancerous lesion in the esophagus associated with gastric reflux. c-Abl, p38 MAPK, and IKK protein kinases were identified to interact in the regulation of ΔNp73. Their inhibition with chemotherapeutic agents and siRNA suppresses ΔNp73. We also found that pro-inflammatory cytokines, IL-1β and TNFα, are potent inducers of ΔNp73α, which further enhance the bile acids/acid effect. Combined, our studies provide evidence that gastroesophageal reflux alters the regulation of oncogenic ΔNp73 isoform that may facilitate tumorigenic transformation of esophageal metaplastic epithelium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661465PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064306PLOS

Publication Analysis

Top Keywords

bile acids
8
Δnp73
8
Δnp73 protein
8
p53 p73
8
gastroesophageal reflux
8
esophageal cells
8
reflux
5
esophageal
5
proinflammatory cytokines
4
bile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!