Dystrophic epidermolysis bullosa, a severely disabling hereditary skin fragility disorder, is caused by mutations in the gene coding for collagen VII, a specialized adhesion component of the dermal-epidermal junction zone. Both recessive and dominant forms are known; the latter account for about 40% of cases. Patients with dominant dystrophic epidermolysis bullosa exhibit a spectrum of symptoms ranging from mild localized to generalized skin manifestations. Individuals with the same mutation can display substantial phenotypic variance, emphasizing the role of modifying genes in this disorder. The etiology of dystrophic epidermolysis bullosa has been known for around two decades; however, important pathogenetic questions such as involvement of modifier genes remain unanswered and a causative therapy has yet to be developed. Much of the failure to make progress in these areas is due to the lack of suitable animal models that capture all aspects of this complex monogenetic disorder. Here, we report the first rat model of dominant dystrophic epidermolysis bullosa. Affected rats carry a spontaneous glycine to aspartic acid substitution, p.G1867D, within the main structural domain of collagen VII. This confers dominant-negative interference of protein folding and decreases the stability of mutant collagen VII molecules and their polymers, the anchoring fibrils. The phenotype comprises fragile and blister-prone skin, scarring and nail dystrophy. The model recapitulates all signs of the human disease with complete penetrance. Homozygous carriers of the mutation are more severely affected than heterozygous ones, demonstrating for the first time a gene-dosage effect of mutated alleles in dystrophic epidermolysis bullosa. This novel viable and workable animal model for dominant dystrophic epidermolysis bullosa will be valuable for addressing molecular disease mechanisms, effects of modifying genes, and development of novel molecular therapies for patients with dominantly transmitted skin disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662756PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064243PLOS

Publication Analysis

Top Keywords

dystrophic epidermolysis
28
epidermolysis bullosa
28
dominant dystrophic
16
collagen vii
16
model dominant
12
rat model
8
modifying genes
8
dystrophic
7
epidermolysis
7
bullosa
7

Similar Publications

Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1, leading to loss or dysfunction of type-VII collagen (C7), a protein essential for skin stability. Clinically, patients suffer from severe skin blistering, chronic or recurrent wounds, and scarring, which predispose to early onset of aggressive squamous cell carcinoma. Previous studies showed that RDEB-keratinocytes (RDEB-KC) express high levels of matrix-metalloproteinase 9 (MMP-9), a molecule known to play a crucial role in wound chronification if dysregulated.

View Article and Find Full Text PDF

Gene editing technologies, particularly clustered regularly interspersed short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins, have revolutionized the ability to modify gene sequences in living cells for therapeutic purposes. Delivery of CRISPR/Cas ribonucleoprotein (RNP) is preferred over its DNA and RNA formats in terms of gene editing effectiveness and low risk of off-target events. However, the intracellular delivery of RNP poses significant challenges and necessitates the development of non-viral vectors.

View Article and Find Full Text PDF

Background: Epidermolysis bullosa (EB) is a group of rare, severe, genetic disorders characterised by persistent skin fragility and open wounds. EB manifests as cutaneous and mucosal blistering, erosions and impaired wound healing.

Objectives: To determine the long-term efficacy, tolerability and safety of Oleogel-S10 (birch bark extract) in dystrophic (DEB) and junctional (JEB) EB in the 24-months open-label phase (OLP) of the EASE study.

View Article and Find Full Text PDF

Systems immunology integrates the complex endotypes of recessive dystrophic epidermolysis bullosa.

Nat Commun

January 2025

National Institute of Health and Medical Research (INSERM) UMRS-976 HIPI, Paris Cité University, Saint-Louis Hospital, 75010, Paris, France.

Endotypes are characterized by the immunological, inflammatory, metabolic, and remodelling pathways that explain the mechanisms underlying the clinical presentation (phenotype) of a disease. Recessive dystrophic epidermolysis bullosa (RDEB) is a severe blistering disease caused by COL7A1 pathogenic variants. Although underscored by animal studies, the endotypes of human RDEB are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!