Stroke is a leading cause of human death and disability in the adult population in the United States and around the world. While stroke treatment is limited, stem cell transplantation has emerged as a promising regenerative therapy to replace or repair damaged tissues and enhance functional recovery after stroke. Recently, the creation of induced pluripotent stem (iPS) cells through reprogramming of somatic cells has revolutionized cell therapy by providing an unlimited source of autologous cells for transplantation. In addition, the creation of vector-free and transgene-free human iPS (hiPS) cells provides a new generation of stem cells with a reduced risk of tumor formation that was associated with the random integration of viral vectors seen with previous techniques. However, the potential use of these cells in the treatment of ischemic stroke has not been explored. In the present investigation, we examined the neuronal differentiation of vector-free and transgene-free hiPS cells and the transplantation of hiPS cell-derived neural progenitor cells (hiPS-NPCs) in an ischemic stroke model in mice. Vector-free hiPS cells were maintained in feeder-free and serum-free conditions and differentiated into functional neurons in vitro using a newly developed differentiation protocol. Twenty eight days after transplantation in stroke mice, hiPS-NPCs showed mature neuronal markers in vivo. No tumor formation was seen up to 12 months after transplantation. Transplantation of hiPS-NPCs restored neurovascular coupling, increased trophic support and promoted behavioral recovery after stroke. These data suggest that using vector-free and transgene-free hiPS cells in stem cell therapy are safe and efficacious in enhancing recovery after focal ischemic stroke in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662762PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064160PLOS

Publication Analysis

Top Keywords

vector-free transgene-free
16
ischemic stroke
16
hips cells
16
stroke mice
12
cells
11
stroke
9
transgene-free human
8
human ips
8
ips cells
8
functional neurons
8

Similar Publications

Next-generation sequencing (NGS) approaches are attractive alternatives to the PCR-based characterisation of genetically modified plants for safety assessment and labelling since NGS is highly sensitive to the detection of T-DNA inserts as well as vector backbone sequences in transgenic plants. In this study, two independent transgenic male Populus tremula lines, T193-2 and T195-1, both carrying the FLOWERING LOCUS T gene from Arabidopsis thaliana under control of a heat-inducible promoter (pHSP::AtFT) and the non-transgenic control clone W52, were further characterised by NGS and third-generation sequencing. The results support previous findings that the T-DNA was hemizygously inserted in one genomic locus of each line.

View Article and Find Full Text PDF

Genotyping, generation and proteomic profiling of the first human autosomal dominant osteopetrosis type II-specific induced pluripotent stem cells.

Stem Cell Res Ther

August 2019

Clinical Medical Research Center of The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, No.1017, Dongmen North Road, Luohu District, Shenzhen, 518020, China.

Background: Autosomal dominant osteopetrosis type II (ADO2) is a rare human genetic disease that has been broadly studied as an important osteopetrosis model; however, there are no disease-specific induced pluripotent stem cells (ADO2-iPSCs) that may be valuable for understanding the pathogenesis and may be a potential source of cells for autologous cell-based therapies.

Methods: To generate the first human ADO2-iPSCs from a Chinese family with ADO2 and to identify their characteristics, blood samples were collected from the proband and his parents and were used for genotyping by whole-exome sequencing (WES); the urine-derived cells of the proband were reprogrammed with episomal plasmids that contained transcription factors, such as KLF4, OCT4, c-MYC, and SOX2. The proteome-wide protein quantification and lysine 2-hydroxyisobutyrylation detection of the ADO2-iPSCs and normal control iPSCs (NC-iPSCs) were performed by high-resolution LC-MS/MS and bioinformatics analysis.

View Article and Find Full Text PDF

Stroke is a leading cause of human death and disability in the adult population in the United States and around the world. While stroke treatment is limited, stem cell transplantation has emerged as a promising regenerative therapy to replace or repair damaged tissues and enhance functional recovery after stroke. Recently, the creation of induced pluripotent stem (iPS) cells through reprogramming of somatic cells has revolutionized cell therapy by providing an unlimited source of autologous cells for transplantation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!