Biological N2O fixation in the Eastern South Pacific Ocean and marine cyanobacterial cultures.

PLoS One

Laboratory of Oceanographic and Climate Processes, PROFC, Department of Oceanography, University of Concepcion, and Center for Climate Change and Resilience Research, CR2, Concepción, Chile.

Published: January 2014

Despite the importance of nitrous oxide (N2O) in the global radiative balance and atmospheric ozone chemistry, its sources and sinks within the Earth's system are still poorly understood. In the ocean, N2O is produced by microbiological processes such as nitrification and partial denitrification, which account for about a third of global emissions. Conversely, complete denitrification (the dissimilative reduction of N2O to N2) under suboxic/anoxic conditions is the only known pathway accountable for N2O consumption in the ocean. In this work, it is demonstrated that the biological assimilation of N2O could be a significant pathway capable of directly transforming this gas into particulate organic nitrogen (PON). N2O is shown to be biologically fixed within the subtropical and tropical waters of the eastern South Pacific Ocean, under a wide range of oceanographic conditions and at rates ranging from 2 pmol N L(-1) d(-) to 14.8 nmol N L(-1) d(-1) (mean ± SE of 0.522 ± 1.06 nmol N L(-1) d(-1), n = 93). Additional assays revealed that cultured cyanobacterial strains of Trichodesmium (H-9 and IMS 101), and Crocosphaera (W-8501) have the capacity to directly fix N2O under laboratory conditions; suggesting that marine photoautotrophic diazotrophs could be using N2O as a substrate. This metabolic capacity however was absent in Synechococcus (RCC 1029). The findings presented here indicate that assimilative N2O fixation takes place under extreme environmental conditions (i.e., light, nutrient, oxygen) where both autotrophic (including cyanobacteria) and heterotrophic microbes appear to be involved. This process could provide a globally significant sink for atmospheric N2O which in turn affects the oceanic N2O inventory and may also represent a yet unexplored global oceanic source of fixed N.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662754PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063956PLOS

Publication Analysis

Top Keywords

n2o
11
n2o fixation
8
eastern south
8
south pacific
8
pacific ocean
8
nmol l-1
8
l-1 d-1
8
biological n2o
4
fixation eastern
4
ocean
4

Similar Publications

A Review of Laboratory Studies on the Heterogeneous Chemistry of NO: Mechanisms and Uptake Kinetics.

J Phys Chem A

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

NO is a significant primary atmospheric pollutant that plays a key role in atmospheric chemistry. It serves as a crucial precursor to photochemical smog, acid rain, and secondary particulate matter and is instrumental in determining the atmospheric oxidation capacity. In this review, we focus on the heterogeneous chemistry of NO, which has been demonstrated to significantly influence the sources and sinks of various nitrogen-containing species through field measurements and model simulations.

View Article and Find Full Text PDF

Nitrous oxide production via enzymatic nitroxyl from the nitrifying archaeon .

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853.

Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (NO) emissions, although biochemical origins of this NO remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA .

View Article and Find Full Text PDF

The biological nitrogen removal process in wastewater treatment inevitably produces nitrous oxide (NO), a potent greenhouse gas. Coarse bubble mixing is widely employed in wastewater treatment processes to mix anoxic tanks; however, its impacts on NO emissions are rarely reported. This study investigates the effects of coarse bubble mixing on NO emissions in a pilot-scale mainstream nitrite shunt reactor over a 50-day steady-state period.

View Article and Find Full Text PDF

Insights into the subdaily variations in methane, nitrous oxide and carbon dioxide fluxes from upland tropical tree stems.

New Phytol

January 2025

Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.

Recent studies have shown that stem fluxes, although highly variable among trees, can alter the strength of the methane (CH) sink or nitrous oxide (NO) source in some forests, but the patterns and magnitudes of these fluxes remain unclear. This study investigated the drivers of subdaily and seasonal variations in stem and soil CH, NO and carbon dioxide (CO) fluxes. CH, NO and CO fluxes were measured continuously for 19 months in individual stems of two tree species, Eperua falcata (Aubl.

View Article and Find Full Text PDF

Anesthetic gases contribute to global warming. We described a two-year performance improvement project to examine the association of individualized provider dashboard feedback of anesthetic gas carbon dioxide equivalent (CDE) production and median perioperative fresh gas flows (FGF) during general anesthetics during perioperative management. Using a custom structured query language (SQL) query, hourly CDE for each anesthetic gas and median FGF were determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!