Introduction: The gastrointestinal tract is frequently exposed to noxious stimuli that may cause oxidative stress, inflammation and injury. Intraluminal pro-oxidants from ingested nutrients especially iron salts and ascorbic acid frequently consumed together, can lead to catalytic formation of oxygen-derived free radicals that ultimately overwhelm the cellular antioxidant defense and lead to cell damage.

Hypothesis: Since the mechanisms remain sketchy, efforts have been exerted to evaluate the role of epigenetics in modulating components of endogenous enzymatic antioxidants in the intestine. To this end, Caco-2/15 cells were exposed to the iron-ascorbate oxygen radical-generating system.

Results: Fe/Asc induced a significant increase in lipid peroxidation as reflected by the elevated formation of malondialdehyde along with the alteration of antioxidant defense as evidenced by raised superoxide dismutase 2 (SOD2) and diminished glutathione peroxidase (GPx) activities and genes. Consequently, there was an up-regulation of inflammatory processes illustrated by the activation of NF-κB transcription factor, the higher production of interleukin-6 and cycloxygenase-2 as well as the decrease of IκB. Assessment of promoter's methylation revealed decreased levels for SOD2 and increased degree for GPx2. On the other hand, pre-incubation of Caco-2/15 cells with 5-Aza-2'-deoxycytidine, a demethylating agent, or Trolox antioxidant normalized the activities of SOD2 and GPx, reduced lipid peroxidation and prevented inflammation.

Conclusion: Redox and inflammatory modifications in response to Fe/Asc -mediated lipid peroxidation may implicate epigenetic methylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661745PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063456PLOS

Publication Analysis

Top Keywords

lipid peroxidation
16
antioxidant defense
12
caco-2/15 cells
8
iron-ascorbate-mediated lipid
4
peroxidation
4
peroxidation epigenetic
4
epigenetic changes
4
antioxidant
4
changes antioxidant
4
defense intestinal
4

Similar Publications

Background: Lung transplantation is the only effective therapeutic option for patients with end-stage lung disease. However, ischemia/reperfusion injury (IRI) during transplantation is a leading cause of primary graft dysfunction (PGD). Ferroptosis, a form of iron-dependent cell death driven by lipid peroxidation, has been implicated in IRI across various organs.

View Article and Find Full Text PDF

Drought is a significant environmental stressor that induces changes in the physiological, morphological, biochemical, and molecular traits of plants, ultimately resulting in reduced plant growth and crop productivity. Seaweed extracts are thought to be effective in mitigating the effects of drought stress on plants. In this study, we investigated the impact of crude extract (CE), and polysaccharides (PS) derived from the brown macroalgae Fucus spiralis (Heterokontophyta, Phaeophyceae) applied at 5% (v/v) and 0.

View Article and Find Full Text PDF

Antifibrotic potential of Reserpine (alkaloid) targeting Keap1/Nrf2; oxidative stress pathway in CCl-induced liver fibrosis.

Chem Biol Interact

January 2025

Applied and Functional Genomics Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan. Electronic address:

The death rate due to liver cancer approaches 2 million annually, the majority is attributed to fibrosis. Currently, there is no efficient, safe, non-toxic, and anti-fibrotic drug available, suggesting room for better drug discovery. The current study aims to evaluate the anti-fibrotic role of reserpine, an alkaloid plant compound against CCl-induced liver fibrosis.

View Article and Find Full Text PDF

Bisphenol S accelerates the progression of high fat diet-induced NAFLD by triggering ferroptosis via regulating HMGCS2.

J Hazard Mater

January 2025

Department of General Surgery, Changzhou TCM Hospital, No. 25, Heping North Road, Changzhou City, Jiangsu Province 213003, China. Electronic address:

Bisphenol S (BPS) is a widely detected environmental toxin with the potential to increase the risk of non-alcoholic fatty liver disease (NAFLD). However, the effects of BPS on the progression of high fat diet (HFD)-induced NAFLD remain unclear. This study aimed to explore the role and underlying mechanisms of action of BPS in HFD-induced NAFLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!