RNA-mediated transmission of phenotypes is an important way to explain non-Mendelian heredity. We have previously shown that small non-coding RNAs can induce hereditary epigenetic variations in mice and act as the transgenerational signalling molecules. Two prominent examples for these paramutations include the epigenetic modulation of the Kit gene, resulting in altered fur coloration, and the modulation of the Sox9 gene, resulting in an overgrowth phenotype. We now report that expression of the Dnmt2 RNA methyltransferase is required for the establishment and hereditary maintenance of both paramutations. Our data show that the Kit paramutant phenotype was not transmitted to the progeny of Dnmt2(-/-) mice and that the Sox9 paramutation was also not established in Dnmt2(-/-) embryos. Similarly, RNA from Dnmt2-negative Kit heterozygotes did not induce the paramutant phenotype when microinjected into Dnmt2-deficient fertilized eggs and microinjection of the miR-124 microRNA failed to induce the characteristic giant phenotype. In agreement with an RNA-mediated mechanism of inheritance, no change was observed in the DNA methylation profiles of the Kit locus between the wild-type and paramutant mice. RNA bisulfite sequencing confirmed Dnmt2-dependent tRNA methylation in mouse sperm and also indicated Dnmt2-dependent cytosine methylation in Kit RNA in paramutant embryos. Together, these findings uncover a novel function of Dnmt2 in RNA-mediated epigenetic heredity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662642PMC
http://dx.doi.org/10.1371/journal.pgen.1003498DOI Listing

Publication Analysis

Top Keywords

rna-mediated epigenetic
8
epigenetic heredity
8
dnmt2 rna-mediated
8
paramutant phenotype
8
kit
5
rna-mediated
4
heredity requires
4
requires cytosine
4
cytosine methyltransferase
4
methyltransferase dnmt2
4

Similar Publications

NAT10 drives endometriosis progression through acetylation and stabilization of TGFB1 mRNA.

Mol Cell Endocrinol

December 2024

International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Speciality, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China. Electronic address:

Endometriosis, a gynecological disorder marked by pelvic pain and infertility, has its pathogenesis and pathophysiology significantly influenced by epigenetics, as these factors have been well characterized. However, the role of RNA-mediated epigenetic regulation in endometriosis remains to be elucidated. In our study, we found that N4-acetylcytidine (acC) RNA modification and N-acetyltransferase 10 (NAT10) were significantly upregulated in endometrial lesions compared to eutopic endometrium.

View Article and Find Full Text PDF

Ferroptosis is a novel form of regulated cell death that plays a key role in inhibiting tumor malignancy. The ferroptosis signalling cascade provides new opportunities for lung cancer therapy. Non‑coding RNA (ncRNA)‑mediated epigenetic modification can influence the vulnerability of cancer cells to ferroptosis in non‑small‑cell lung cancer (NSCLC).

View Article and Find Full Text PDF

RNA binding by Periphilin plays an essential role in initiating silencing by the HUSH complex.

Nucleic Acids Res

December 2024

Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK.

Article Synopsis
  • The human silencing hub (HUSH) complex is an epigenetic system that silences retroelements in the genome, primarily through components like TASOR, MPP8, and Periphilin, which work together to facilitate chromatin modification.
  • Periphilin is identified as the main RNA-binding component of the HUSH complex, and its N-terminal domain is crucial for both RNA binding and the overall function of HUSH.
  • The study demonstrates that Periphilin can exert HUSH-dependent silencing even when artificially tethered to a transcript that normally would not be silenced, highlighting its importance in the complex's mechanism of action.
View Article and Find Full Text PDF

Macrophage metabolic reprogramming ameliorates diabetes-induced microvascular dysfunction.

Redox Biol

November 2024

Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200030, China. Electronic address:

Macrophages play an important role in the development of vascular diseases, with their homeostasis closely linked to metabolic reprogramming. This study aims to explore the role of circular RNA-mediated epigenetic remodeling in maintaining macrophage homeostasis during diabetes-induced microvascular dysfunction. We identified a circular RNA, circRNA-sperm antigen with calponin homology and coiled-coil domains 1 (cSPECC1), which is significantly up-regulated in diabetic retinas and in macrophages under diabetic stress.

View Article and Find Full Text PDF

An update on epigenetic mechanisms in endometriosis.

Minerva Obstet Gynecol

December 2024

Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

The etiopathogenesis of endometriosis, a chronic debilitating disease affecting nearly 10% of women, has evaded elucidation until the recent epigenetic discoveries. Although still deemed multifactorial, endometriosis is likely predisposed in women with genetic and epigenetic alterations, which are activated by environmental factors. There are many epigenetic changes that have recently been associated with endometriosis: DNA methylation and phosphorylation, modifications to histones and non-coding RNA, and chromatin remodeling and organization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!