The misassembly of soluble proteins into toxic aggregates, including amyloid fibrils, underlies a large number of human degenerative diseases. Cardiac amyloidoses, which are most commonly caused by aggregation of Ig light chains or transthyretin (TTR) in the cardiac interstitium and conducting system, represent an important and often underdiagnosed cause of heart failure. Two types of TTR-associated amyloid cardiomyopathies are clinically important. The Val122Ile (V122I) mutation, which alters the kinetic stability of TTR and affects 3% to 4% of African American subjects, can lead to development of familial amyloid cardiomyopathy. In addition, aggregation of WT TTR in individuals older than age 65 y causes senile systemic amyloidosis. TTR-mediated amyloid cardiomyopathies are chronic and progressive conditions that lead to arrhythmias, biventricular heart failure, and death. As no Food and Drug Administration-approved drugs are currently available for treatment of these diseases, the development of therapeutic agents that prevent TTR-mediated cardiotoxicity is desired. Here, we report the development of AG10, a potent and selective kinetic stabilizer of TTR. AG10 prevents dissociation of V122I-TTR in serum samples obtained from patients with familial amyloid cardiomyopathy. In contrast to other TTR stabilizers currently in clinical trials, AG10 stabilizes V122I- and WT-TTR equally well and also exceeds their efficacy to stabilize WT and mutant TTR in whole serum. Crystallographic studies of AG10 bound to V122I-TTR give valuable insights into how AG10 achieves such effective kinetic stabilization of TTR, which will also aid in designing better TTR stabilizers. The oral bioavailability of AG10, combined with additional desirable drug-like features, makes it a very promising candidate to treat TTR amyloid cardiomyopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683741 | PMC |
http://dx.doi.org/10.1073/pnas.1300761110 | DOI Listing |
Alzheimers Dement
January 2025
Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Introduction: The generalizability of neuroimaging and cognitive biomarkers in their sensitivity to detect preclinical Alzheimer's disease (AD) and power to predict progression in large, multisite cohorts remains unclear.
Method: Longitudinal demographics, T1-weighted magnetic resonance imaging (MRI), and cognitive scores of 3036 cognitively unimpaired (CU) older adults (amyloid beta [Aβ]-negative/positive [A-/A+]: 1270/1558) were included. Cross-sectional and longitudinal cognition and medial temporal lobe (MTL) structural measures were extracted.
Alzheimers Dement
January 2025
Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
Introduction: Traditional multivariate methods for neuroimaging studies overlook the interdependent relationship between brain features. This study addresses this gap by analyzing relative brain volumetric patterns to capture how Alzheimer's disease (AD) and genetics influence brain structure along the disease continuum.
Methods: This study analyzed data from participants across the AD continuum from the Alzheimer's and Families (ALFA) and Alzheimer's Disease Neuroimaging Initiative (ADNI) studies.
Background: A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals.
View Article and Find Full Text PDFIntroduction: Alzheimer's disease (AD) lacks a less invasive and early detectable biomarker. Here, we investigated the biomarker potential of miR-501-3p and miR-502-3p using different AD sources.
Methods: MiR-501-3p and miR-502-3p expressions were evaluated in AD CSF exosomes, serum exosomes, familial and sporadic AD fibroblasts and B-lymphocytes by qRT-PCR analysis.
Toxicol Rep
June 2025
Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal 700054, India.
Alzheimer's Disease (AD) is one of the leading neurodegenerative diseases that affect the human population. Several hypotheses are in the pipeline to establish the commencement of this disease; however, the amyloid hypothesis is one of the most widely accepted ones. Amyloid plaques are rich in Amyloid Beta (Aβ) proteins, which are found in the brains of Alzheimer's patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!