A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polaro-cryptic mirror of the lookdown as a biological model for open ocean camouflage. | LitMetric

With no object to hide behind in 3D space, the open ocean represents a challenging environment for camouflage. Conventional strategies for reflective crypsis (e.g., standard mirror) are effective against axially symmetric radiance fields associated with high solar altitudes, yet ineffective against asymmetric polarized radiance fields associated with low solar inclinations. Here we identify a biological model for polaro-crypsis. We measured the surface-reflectance Mueller matrix of live open ocean fish (lookdown, Selene vomer) and seagrass-dwelling fish (pinfish, Lagodon rhomboides) using polarization-imaging and modeling polarization camouflage for the open ocean. Lookdowns occupy the minimization basin of our polarization-contrast space, while pinfish and standard mirror measurements exhibit higher contrast values than optimal. The lookdown reflective strategy achieves significant gains in polaro-crypsis (up to 80%) in comparison with nonpolarization sensitive strategies, such as a vertical mirror. Lookdowns achieve polaro-crypsis across solar altitudes by varying reflective properties (described by 16 Mueller matrix elements m(ij)) with incident illumination. Lookdowns preserve reflected polarization aligned with principle axes (dorsal-ventral and anterior-posterior, m(22) = 0.64), while randomizing incident polarization 45° from principle axes (m(33) = -0.05). These reflectance properties allow lookdowns to reflect the uniform degree and angle of polarization associated with high-noon conditions due to alignment of the principle axes and the sun, and reflect a more complex polarization pattern at asymmetrical light fields associated with lower solar elevations. Our results suggest that polaro-cryptic strategies vary by habitat, and require context-specific depolarization and angle alteration for effective concealment in the complex open ocean environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683730PMC
http://dx.doi.org/10.1073/pnas.1222125110DOI Listing

Publication Analysis

Top Keywords

open ocean
20
fields associated
12
principle axes
12
biological model
8
standard mirror
8
radiance fields
8
solar altitudes
8
mueller matrix
8
open
5
ocean
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!