Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The possible role of frequency-shift detectors (FSDs) was assessed for a task measuring the ability to hear out individual "inner" partials in a chord with seven partials uniformly spaced on the ERBN-number (Cam) scale. In each of the two intervals in a trial, a pure-tone probe was followed by a chord. In one randomly selected interval, the frequency of the probe was the same as that of a partial in the chord. In the other interval, the probe was mistuned upwards or downwards from the "target" partial. The task was to indicate the interval in which the probe coincided with the target. In the "symmetric" condition, the frequency of the mistuned probe was midway in Cams between that of two partials in the chord. This should have led to approximately symmetric activation of the up-FSDs and down-FSDs, such that differential activation provided a minimal cue. In the "asymmetric" condition, the mistuned probe was much closer in frequency to one partial in the chord than to the next closest partial. This should have led to differential activation of the up-FSDs and down-FSDs, providing a strong discrimination cue. Performance was predicted to be better in the asymmetric than in the symmetric condition. The results were consistent with this prediction except when the probe was mistuned above the sixth (second highest) partial in the chord. To explain this, it is argued that activation of FSDs depends both on the size of the frequency shift between successive components and on the pitch strength of each component.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4614-1590-9_15 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!