Controlled annotations for systems biology.

Methods Mol Biol

The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus Hinxton, Cambridge, UK.

Published: December 2013

The aim of this chapter is to provide sufficient information to enable a reader, new to the subject of Systems Biology, to create and use effectively controlled annotations, using resolvable Identifiers.org Uniform Resource Identifiers (URIs). The text details the underlying requirements that have led to the development of such an identification scheme and infrastructure, the principles that underpin its syntax and the benefits derived through its use. It also places into context the relationship with other standardization efforts, how it differs from other pre-existing identification schemes, recent improvements to the system, as well as those that are planned in the future. Throughout, the reader is provided with explicit examples of use and directed to supplementary information where necessary.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-62703-450-0_12DOI Listing

Publication Analysis

Top Keywords

controlled annotations
8
systems biology
8
annotations systems
4
biology aim
4
aim chapter
4
chapter provide
4
provide sufficient
4
sufficient enable
4
enable reader
4
reader subject
4

Similar Publications

Automated analysis of spoken language differentiates multiple system atrophy from Parkinson's disease.

J Neurol

January 2025

Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Praha 6, 16000, Prague, Czech Republic.

Background And Objectives: Patients with synucleinopathies such as multiple system atrophy (MSA) and Parkinson's disease (PD) frequently display speech and language abnormalities. We explore the diagnostic potential of automated linguistic analysis of natural spontaneous speech to differentiate MSA and PD.

Methods: Spontaneous speech of 39 participants with MSA compared to 39 drug-naive PD and 39 healthy controls matched for age and sex was transcribed and linguistically annotated using automatic speech recognition and natural language processing.

View Article and Find Full Text PDF

Long-lasting and controlled-release borate as a biocide against microbial breeding in a recirculating cooling water system.

Sci Total Environ

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China.

Based on the potential bactericidal properties of borate, we synthesized controlled-release borate (CRB) as a novel biocide to inhibit microbial proliferation in a recirculating cooling water system (RCS). In this study, toxicity experiments of CRB were conducted on the dominant bacteria and algae isolated from an actual RCS. The effects of CRB on biocidal performance and genotoxicity were evaluated in a simulated RCS.

View Article and Find Full Text PDF

One of the key challenges in pharmacoepidemiological studies is that of uncontrolled confounding, which occurs when confounders are poorly measured, unmeasured or unknown. Self-controlled designs can help address this issue, as their key comparison is not between people, but periods of time within the same person. This controls for all time-stable confounders (genetics) and in the absence of time-varying confounding negates the need for an external control group.

View Article and Find Full Text PDF

Motivation: Fine-mapping aims to prioritize causal variants underlying complex traits by accounting for the linkage disequilibrium of GWAS risk locus. The expanding resources of functional annotations serve as auxiliary evidence to improve the power of fine-mapping. However, existing fine-mapping methods tend to generate many false positive results when integrating a large number of annotations.

View Article and Find Full Text PDF

The Candida Genome Database (CGD; www.candidagenome.org) is unique in being both a model organism database and a fungal pathogen database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!