Background: Nontypeable Haemophilus influenzae (NTHi) exclusively infects humans, causing significant numbers of upper respiratory tract infections. The goal of this study was to develop a safe experimental human model of NTHi nasopharyngeal colonization.
Methods: A novel streptomycin-resistant strain of NTHi was developed, and 15 subjects were inoculated in an adaptive-design phase I trial to rapidly identify colonizing doses of NTHi. Bayesian analysis was used to estimate the human colonizing dose 50 and 90 (HCD50 and HCD90, respectively). Side effects and immunological responses to whole-cell sialylated NTHi were measured.
Results: Nine subjects were colonized and tolerated colonization well. Immunological analyses demonstrated that 7 colonized subjects and 0 noncolonized subjects had a 4-fold rise in serum levels of immunoglobulin A, immunoglobulin M, or immunoglobulin G. Preexisting immunity to whole-cell NTHi did not predict success or failure of colonization.
Conclusions: The statistical design incorporated a slow escalation to higher dose levels. HCD50 and HCD90 Bayesian estimates were identified as approximately 2000 and 150 000 colony-forming units, respectively; credible interval estimates were broad. This study provides a potential platform for early proof of concept studies for NTHi vaccines, as well as a way to evaluate bacterial factors associated with colonization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733507 | PMC |
http://dx.doi.org/10.1093/infdis/jit238 | DOI Listing |
Respir Res
January 2025
Microbial Antibodies and Technologies, Research and Early Development, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by airway obstruction and inflammation. Non-typeable Haemophilus influenzae (NTHi) lung infections are common in COPD, promoting frequent exacerbations and accelerated lung function decline. The relationship with immune responses and NTHi are poorly understood.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
January 2025
National reference centre for Haemophilus influenzae, Department of microbiology, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université libre de Bruxelles, Brussels, Belgium.
Introduction: Haemophilus influenzae plays a major role in invasive bacterial infections. Resistant strains are emerging, prompting the WHO to include H. influenzae on its list of priority pathogens for research and development of new antibiotics.
View Article and Find Full Text PDFJ Infect Chemother
January 2025
Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8576, Japan.
Introduction: We investigated clinical and microbiological characteristics of invasive Haemophilus influenzae disease (IHD) during recent 20 years in the Minami Ibaraki Area.
Methods: H. influenzae strains isolated from the blood and the cerebrospinal fluid in 5 hospitals located in this area between 2001 and 2020 (the pre-vaccination period [PreVP]: 2001-2010, the post-vaccination period [PostVP]: 2011-2020) were consecutively collected.
Microorganisms
December 2024
Laboratory of Microbiology, Children's Hospital of Tunis, Beb Saadoun, Tunis 1007, Tunisia.
The changing epidemiological profile of invasive infections (IIHi) is noted in the post-vaccination era. The aim of this study was to characterize phenotypically and genotypically invasive (Hi) isolates detected in Tunisian pediatric patients. A retrospective study was conducted in the microbiology laboratory of the Children's Hospital of Tunis over ten years (2013-2023).
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States.
Interstitial lung disease (ILD) is characterized by chronic inflammation and scarring of the lungs, of which idiopathic pulmonary fibrosis (IPF) is the most devastating pathologic form. Idiopathic pulmonary fibrosis pathogenesis leads to loss of lung function and eventual death in 50% of patients, making it the leading cause of ILD-associated mortality worldwide. Persistent and subclinical microbial infections are implicated in the acute exacerbation of chronic lung diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!