The [Ru(III)(edta)(H2O)](-) (edta(4-) = ethylenediaminetetraacetate) complex is shown to catalyze the oxidation of thiocyanate (SCN(-)) with H2O2 mimicking the action of peroxidases. The kinetics of the catalytic oxidation process was studied by using stopped-flow and rapid scan spectrophotometry as a function of [Ru(III)(edta)], [H2O2], [SCN(-)], pH (3.2-9.1) and temperature (15-30 °C). Spectral analyses and kinetic data are suggestive of a catalytic pathway in which hydrogen peroxide reacts directly with thiocyanate coordinated to the Ru(III)(edta) complex. Catalytic intermediates such as [Ru(III)(edta)(OOH)](2-) and [Ru(V)(edta)(O)](-) were found to be non-reactive in the oxidation process under the specified conditions. Formation of SO4(2-) and OCN(-) was identified as oxidation products in ESI-MS experiments. A detailed mechanism in agreement with the spectral and kinetic data is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt50723hDOI Listing

Publication Analysis

Top Keywords

oxidation thiocyanate
8
oxidation process
8
kinetic data
8
oxidation
5
thiocyanate h2o2
4
h2o2 catalyzed
4
catalyzed [ruiiiedtah2o]-
4
[ruiiiedtah2o]- [ruiiiedtah2o]-
4
[ruiiiedtah2o]- edta4-
4
edta4- ethylenediaminetetraacetate
4

Similar Publications

Aims: Organic thiocyanates are important pharmaceutical intermediates. This study aimed to develop a selective and efficient approach for synthesizing organic thiocyanates.

Methods: Under mild reaction conditions, an array of alkenes, KSCN, and diaryliodonium salts are considered good substrates, providing various aryl-substituted alkylthiocyanates with modest to excellent yield.

View Article and Find Full Text PDF

Computational exploration of the electrochemical oxidation mechanism of thiocyanate catalyzed by cobalt-phthalocyanines.

Phys Chem Chem Phys

January 2025

Departamento de Química, Facultad de Ciencias, Universidad de Chile, P. O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile.

In this study, we focused on the mechanism of the electrocatalytic oxidation of thiocyanate, which in traditional electrodes typically requires high overpotentials. As models for reducing these overpotentials and catalyzing the reaction, we used a set of modified cobalt phthalocyanines (CoPc), known as electrocatalysts. Using DFT calculations, we explored how modifications to CoPc by adding electron-donating and withdrawing groups and the coordination of 4-amino thiophenol impact the oxidation process.

View Article and Find Full Text PDF

The site-selective functionalization of cyclic amides provides an attractive protocol for the synthesis of valuable molecules. We report herein an electrochemical desaturation and β-thiocyanation of cyclic amides under external oxidant-free conditions. This method exhibits broad functional group tolerance, excellent selectivity, mild reaction conditions and can be applied for late-stage functionalization of bioactive molecules.

View Article and Find Full Text PDF

Electrophotocatalytic Thiocyanation and Sulfonylation Cyclization of Unactivated Alkenes.

J Org Chem

January 2025

School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, P. R. China.

We report an electrophotocatalytic process that enables the thiocyanation and sulfonylation/cyclization of alkenes. It is applicable to a wide range of unactivated alkenes, using the inexpensive photocatalyst 2,4,6-triphenylpyrylium tetrafluoroborate (TPPT) to produce a diverse array of heterocycles containing sulfonyl and thiocyano groups with good functional group tolerance. The protocol operates under mild, chemical oxidant- and transition-metal-free, with a broad scope of substrates.

View Article and Find Full Text PDF

New insight into the molecular etiopathogenesis of konzo: Cyanate could be a plausible neurotoxin contributing to konzo, contrary to thiocyanate.

Neurotoxicology

December 2024

Université Catholique de Bukavu (UCB), Center for Tropical Diseases and Global Health (CTDGH), Bukavu,  Democratic Republic Congo; University of Fribourg, Faculty of Science and Medicine, Department of Neuroscience and Movement Science, Fribourg, Switzerland.

Introduction: Chronic cassava-derived cyanide poisoning is associated with the appearance of konzo, a tropical spastic paraparesis due to selective upper motor neuron damage. Whether the disease is caused by a direct action of cyanide or its metabolites is still an open question. This preliminary study assessed the neurotoxic effects of thiocyanate (SCN) and cyanate (OCN), two cyanide metabolites hypothesized to be plausible toxic agents in konzo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!