Autophagy, the major lysosomal pathway for recycling intracellular components including whole organelles, is emerging as a key process modulating tumorigenesis, tumor-stroma interactions, and cancer therapy. Research over the past decade has highlighted a context-dependent and dynamic role for autophagy in cancer: it is tumor suppressive in the early stages of cancer development, but fuels the growth of established tumors. Likewise, the stimulation of autophagy in response to therapeutics can contextually favor or weaken chemoresistance and antitumor immunity. From a therapeutic perspective, understanding whether, when, and how autophagy can be harnessed to kill cancer cells remains challenging. In this review, we discuss new connections that reveal the role of autophagy in shaping tumor-stroma interaction during carcinogenesis and in the context of anticancer treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molmed.2013.04.005 | DOI Listing |
Cell Death Differ
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally.
View Article and Find Full Text PDFMater Today Bio
February 2025
Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
Subconjunctival fibrosis (SCF) is a common and refractory eye disease that is a serious threat to vision. The severe side effects of existing drugs and low drug bioavailability due to the ocular barrier are major challenges in SCF treatment. Hence, there is an urgent need to explore safer and more effective strategies for administering anti-SCF drugs.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Medicina Interna e Gastroenterologia, CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy.
The unfolded protein response (UPR) is a complex intracellular signal transduction system that orchestrates the cellular response during Endoplasmic Reticulum (ER) stress conditions to reestablish cellular proteostasis. If, on one side, prolonged ER stress conditions can lead to programmed cell death and autophagy as a cytoprotective mechanism, on the other, unresolved ER stress and improper UPR activation represent a perilous condition able to trigger or exacerbate inflammatory responses. Notably, intestinal and immune cells experience ER stress physiologically due to their high protein secretory rate.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.
In high-intensity and sprint interval training, the frequency of contractions is typically higher compared with moderate-intensity continuous training, but it remains unclear whether this contributes to the effective increase in fatigue resistance mechanisms. Here, we investigated the role of contraction frequency in high-intensity training on endurance adaptations of mouse skeletal muscle. Male C57BL/6 mice were divided into groups based on high (0.
View Article and Find Full Text PDFAutophagy
December 2024
Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK.
Mitochondrial DNA (mtDNA) encodes genes essential for oxidative phosphorylation. The m.3243A>G mutation causes severe disease, including myopathy, lactic acidosis and stroke-like episodes (MELAS) and is the most common pathogenic mtDNA mutation in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!