Objectives: The aim of this study was to evaluate the thermal and mechanical properties of the composite resins containing the photo-initiators camphorquinone (CQ) and/or phenyl-propanodione (PPD) when photoactivated with halogen lamp (XL2500/3M-ESPE), monowave (UltraBlueIS/DMC) and polywave (UltraLume5/Ultradent) LED units.

Materials And Methods: A blend of BisGMA, UDMA, BisEMA and TEGDMA was prepared with the same wt% of photo-initiators CQ and/or PPD and 65wt% of silaneted filler particles. Compression strength (CS), diametral tensile strength (DTS) and diametral modulus (DM) were tested. Thermogravimetric analysis (TGA) was made and the lost residual monomer were verified. Dynamic mechanical thermal analysis (DMTA) was used for to analyze the glass transition temperature (Tg) and the storage modulus in 37°C. Degree of conversion (DC) was accomplished in the same samples of DMA using middle-infrared spectroscopy (mid-IR).

Results: CQ, CQ/PPD and PPD obtained the same results for all mechanical properties (CS, DTS and DM), lost residual monomer and storage modulus in 37°C, regardless LCU used. The results of Tg showed that the combination PPD-UltraLume5 produced the highest values. DC showed that the combination CQ-UltraLume5 resulted in the highest values and PPD-XL2500 in the lowest DC values.

Conclusion: The study shows that PPD is not only effective photosensitizers, but also photocrosslinking agents for dental composite resins with a similar efficiency to CQ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2013.04.010DOI Listing

Publication Analysis

Top Keywords

composite resins
12
dynamic mechanical
8
mechanical thermal
8
thermal analysis
8
mechanical properties
8
lost residual
8
residual monomer
8
storage modulus
8
modulus 37°c
8
highest values
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!