Photolysis of protonated phenylhydroxylamine was studied using product analysis, trapping experiments, and laser flash photolysis experiments (UV-vis and TR(3) detection) ranging from the femtosecond to the microsecond time scale. We find that the excited state of the photoprecursor is followed by two species: a longer-lived transient (150 ns) that we assign to the phenoxy radical and a shorter-lived (3-20 ns) transient that we assign to the singlet phenyloxenium ion. Product studies from photolysis of this precursor show rearranged protonated o-/p-aminophenols and solvent water adducts (catechol, hydroquinone) and ammonium ion. The former products can be largely ascribed to radical recombination or ion recombination, while the latter are ascribed to solvent water addition to the phenyloxenium ion. The phenyloxenium ion is apparently too short-lived under these conditions to be trapped by external nucleophiles other than solvent, giving only trace amounts of o-/p-chloro adducts upon addition of chloride trap. Product studies upon thermolysis of this precursor give the same products as those generated from photolysis, with the difference being that the ortho adducts (o-aminophenol, hydroquinone) are formed in a higher ratio in comparison to the photolysis products.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja403370kDOI Listing

Publication Analysis

Top Keywords

phenyloxenium ion
16
product studies
8
solvent water
8
ion
6
photolysis
5
direct detection
4
detection reactivity
4
reactivity short-lived
4
phenyloxenium
4
short-lived phenyloxenium
4

Similar Publications

A new photoprecursor to the phenyloxenium ion, 4-methoxyphenoxypyridinium tetrafluoroborate, was investigated using trapping studies, product analysis, computational investigations, and laser flash photolysis experiments ranging from the femtosecond to the millisecond time scale. These experiments allowed us to trace the complete arc of the photophysics and photochemistry of this photoprecursor beginning with the initially populated excited states to its sequential formation of transient intermediates and ultimate formation of stable photoproducts. We find that the excited state of the photoprecursor undergoes heterolysis to generate the phenyloxenium ion in ∼2 ps but surprisingly generates the ion in its open-shell singlet diradical configuration (A), permitting an unexpected look at the reactivity of an atom-centered open-shell singlet diradical.

View Article and Find Full Text PDF

New photoheterolysis precursors to study oxenium ions: combining experiment and theory.

Org Biomol Chem

March 2017

Department of Chemistry, Iowa State University, 2101d Hach Hall, Ames, Iowa 50011, USA.

The combination of theoretical calculations and laser flash photolysis experiments has aided in understanding the reactivity and properties of oxenium ions. Direct observation of the reactivity, spin configurations, and lifetimes of short-lived oxenium ions via laser flash photolysis (LFP) techniques is now possible due to the discovery of new photoprecursors to these species. These new precursors allowed the direct observation of the parent phenyloxenium ion in solution by using protonated hydroxylamine tetrafluoroborate salt.

View Article and Find Full Text PDF

Oxenium ions are important reactive intermediates in synthetic chemistry and enzymology, but little is known of the reactivity, lifetimes, spectroscopic signatures, and electronic configurations of these unstable species. Recent advances have allowed these short-lived ions to be directly detected in solution from laser flash photolysis of suitable photochemical precursors, but all of the studies to date have focused on aryloxenium ions having closed-shell singlet ground state configurations. To study alternative spin configurations, we synthesized a photoprecursor to the m-dimethylamino phenyloxenium ion, which is predicted by both density functional theory and MRMP2 computations to have a triplet ground state electronic configuration.

View Article and Find Full Text PDF

Photolysis of protonated phenylhydroxylamine was studied using product analysis, trapping experiments, and laser flash photolysis experiments (UV-vis and TR(3) detection) ranging from the femtosecond to the microsecond time scale. We find that the excited state of the photoprecursor is followed by two species: a longer-lived transient (150 ns) that we assign to the phenoxy radical and a shorter-lived (3-20 ns) transient that we assign to the singlet phenyloxenium ion. Product studies from photolysis of this precursor show rearranged protonated o-/p-aminophenols and solvent water adducts (catechol, hydroquinone) and ammonium ion.

View Article and Find Full Text PDF

The geometries and energies of the electronic states of phenyloxenium ion 1 (Ph-O(+)) were computed at the multireference CASPT2/pVTZ level of theory. Despite being isoelectronic to phenylnitrene 4, the phenyloxenium ion 1 has remarkably different energetic orderings of its electronic states. The closed-shell singlet configuration ((1)A(1)) is the ground state of the phenyloxenium ion 1, with a computed adiabatic energy gap of 22.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!