AI Article Synopsis

Article Abstract

We present a detailed comparison between subsequent versions of commercially available wavelength-scanned cavity ring-down water isotope analysers (L2120-i and L2130-i, Picarro Inc.). The analysers are used in parallel in a continuous mode by adaption of a low-volume flash evaporation module. Application of the analysers to ice-core analysis is assessed by comparison between continuous water isotope measurements of a glacial ice-core from Severnaya Zemlya with discrete isotope-ratio mass spectrometry measurements performed on parallel samples from the same ice-core. The great advances between instrument versions, particularly in the measurement of δ(2)H, allow the continuous technique to achieve the same high level of accuracy and precision obtained using traditional isotope spectrometry techniques in a fraction of the experiment time. However, when applied to continuous ice-core measurements, increased integration times result in a compromise of the achievable depth resolution of the ice-core records.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10256016.2013.781598DOI Listing

Publication Analysis

Top Keywords

cavity ring-down
8
mass spectrometry
8
continuous ice-core
8
ice-core analysis
8
water isotope
8
ice-core
6
continuous
5
comparison water
4
water isotope-ratio
4
isotope-ratio determinations
4

Similar Publications

Absorption cross section of gas phase isoprene in the infrared-visible range.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, DK-2100, Denmark. Electronic address:

We have recorded the gas phase spectrum of isoprene at room temperature from the mid-infrared range and into the visible range (600 cm to 17050 cm). Absorption spectra were obtained by Fourier transform infrared, conventional dispersion ultraviolet-visible-near-infrared and cavity ring-down spectroscopy to cover the entire range with a resolution comparable to that of the instruments on the James Webb Space Telescope. We have assigned the CH-stretching fundamental and overtone bands corresponding to the Δv=1-6 transitions based on anharmonic vibrational calculations using normal mode and local mode models, for the lower- and higher-energy regions, respectively.

View Article and Find Full Text PDF

We report photodissociation processes and spectral measurements upon photoabsorption of size-selected cationic silver clusters, Ag, stored in an ion trap. The experiment shows that small clusters ( ≲ 15) dissociate upon one-photon absorption, whereas larger ones require multiple photons up to five in the present study. The emergence of multi-photon processes is attributed to collisional cooling in the presence of a buffer helium gas in the trap, which competes with size-dependent dissociation rates.

View Article and Find Full Text PDF

Cavity ring-down spectroscopy (CRDS) is rapidly becoming an invaluable tool to measure hydrogen (δ²H) and oxygen (δO) isotopic compositions in water, yet the long-term accuracy and precision of this technique remain relatively underreported. Here, we critically evaluate one-year performance of CRDS δ²H and δO measurements at ETH Zurich, focusing on high throughput (~200 samples per week) while maintaining required precision and accuracy for diverse scientific investigations. We detail a comprehensive methodological and calibration strategy to optimize CRDS reliability for continuous, high-throughput analysis using Picarro's "Express" mode, an area not extensively explored previously.

View Article and Find Full Text PDF

Ion Spectroscopy in the Context of the Diffuse Interstellar Bands: A Case Study with the Phenylacetylene Cation.

ACS Earth Space Chem

December 2024

School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, King's Buildings, Edinburgh EH9 3FJ, Scotland, U.K.

Identification of the molecular carriers of diffuse interstellar bands (DIBs) requires gas phase electronic spectra of suitable candidate structures. Recording the spectra of these in the laboratory is challenging because they include large, carbon-rich molecules, many of which are likely to be ionic. The electronic spectra of ions are often obtained using action spectroscopy methods, which can induce small perturbations to the absorption characteristics and hinder comparison with astronomical observations.

View Article and Find Full Text PDF

Radiocarbon analysis of nuclear waste produced in nuclear facilities lacks fast, in situ detection methods. Moreover, the amount of radiocarbon desorbing from graphitic waste is not well known. In this study, we demonstrate the use of mid-infrared cavity ring-down spectroscopy combined with an automatic sample processing unit as a method to examine radiocarbon concentration in three types of nuclear waste: spent ion-exchange resin, graphite, and graphite outgassing in sealed storage crates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!