Proline utilization A (PutA) from Escherichia coli is a membrane-associated trifunctional flavoenzyme that catalyzes the oxidation of proline to glutamate and moonlights as a transcriptional regulator. As a regulatory protein, PutA represses transcription of the put regulon, which contains the genes encoding PutA and the proline transporter PutP. The binding of proline to the proline dehydrogenase active site and the subsequent reduction of the flavin induce high affinity membrane association of PutA and relieve repression of the put regulon, thereby causing PutA to switch from its regulatory to its enzymatic role. Here, we present evidence suggesting that residues of the β3-α3 loop of the proline dehydrogenase domain (βα)8 barrel are involved in proline-mediated allosteric regulation of PutA-membrane binding. Mutation of the conserved residues Asp370 and Glu372 in the β3-α3 loop abrogates the ability of proline to induce functional membrane association. Both in vitro lipid/membrane binding assays and in vivo cell-based assays demonstrate that mutagenesis of Asp370 (D370N/A) or Glu372 (E372A) dramatically impedes PutA functional switching. The crystal structures of the proline dehydrogenase domain mutants PutA86-630D370N and PutA86-630D370A complexed with the proline analogue l-tetrahydro-2-furoic acid show that the mutations cause only minor perturbations to the active site but no major structural changes, suggesting that the lack of proline response is not due to a failure of the mutated active sites to correctly bind the substrate. Rather, these results suggest that the β3-α3 loop may be involved in transmitting the status of the proline dehydrogenase active site and flavin redox state to the distal membrane association domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3731750PMC
http://dx.doi.org/10.1021/bi400396gDOI Listing

Publication Analysis

Top Keywords

proline dehydrogenase
20
β3-α3 loop
16
membrane association
16
proline
13
dehydrogenase domain
12
active site
12
loop proline
8
allosteric regulation
8
proline utilization
8
dehydrogenase active
8

Similar Publications

The razor clam , a significant marine bivalve species, inhabits estuaries and encounters salinity stress. Despite its commercial importance, there is limited understanding of its adaptive mechanisms to high salinity. Aldehyde dehydrogenases (ALDHs), which belong to the NAD(P)-dependent superfamily, play a crucial role in stress resilience by participating in catabolic and anabolic pathways, such as carnitine synthesis, glycolysis, and amino acid metabolism.

View Article and Find Full Text PDF

Insectary plants, such as sweet alyssum, coriander, and white mustard, are well known for their traits that attract beneficial insects, allowing them to protect crops from pests. The aim of the study was to analyze the compounds that are important in the antioxidant response, such as malondialdehyde, ascorbic acid, proline, total phenolics, and total flavonoids, as well as the content of elements, including macroelements (K, Mg, Na, Ca, P, and S) and heavy metals (Cd, Cu, Zn, Pb, Ni, Mn, and Fe) in broad bean plants. These plants were grown in field conditions as the main protected plant alongside a mixture of three insectary plants at different proportions of the individual components.

View Article and Find Full Text PDF

Novel and simple spectrophotometric and distance based procedures for thiols (L-cysteine, N-acetylcysteine, and glutathione) determination in biological fluids and pharmaceuticals have been proposed based on their inhibitory action on the oxidation of catechol in the presence of Agaricus bisporus crude extract (ABE). The influence of L-glycine, L-alanine, L-proline, L-methionine, L-cystine, ascorbic acid, uric acid, and bilirubin on the thiol determination has been investigated. Uric acid, bilirubin, L-cystine (oxidized thiol), and L-amino acids do not interfere with the determination.

View Article and Find Full Text PDF

Innovative auxin-micronutrient based nanocomposites (IAA-FeONPs and IAA-MnONPs) shield strawberry plants from lead toxicity.

Plant Physiol Biochem

December 2024

Department of Pomology, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt; Biology Research & Studies Institute, Assiut University, Assiut, 71526, Egypt. Electronic address:

Smart nanohybrid technology with potential advantages to plants has recently been developed formanaging the widespread pollution of heavy metals. Herein, we disclose a novel strategy to combat Pb stress in strawberry (Fragaria spp. cv.

View Article and Find Full Text PDF

High salt concentrations pose a significant challenge to the efficiency of activated sludge (AS) in phenolic wastewater treatment. As a cellular osmoprotectant, proline (Pro) has the capacity to increase the salt tolerance of microbes in AS, hence improving the efficiency of phenolic wastewater degradation. Nevertheless, the precise mechanism behind this enhancement remains ambiguous.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!