A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The flavoenzyme azobenzene reductase AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high affinity and is less active in its RoFMN form. | LitMetric

The Gram-positive bacterium Streptomyces davawensis is the only organism known to produce the antibiotic roseoflavin. Roseoflavin is a structural riboflavin analogue and is converted to the flavin mononucleotide (FMN) analogue roseoflavin mononucleotide (RoFMN) by flavokinase. FMN-dependent homodimeric azobenzene reductase (AzoR) (EC 1.7.1.6) from Escherichia coli was analyzed as a model enzyme. In vivo and in vitro experiments revealed that RoFMN binds to the AzoR apoenzyme with an even higher affinity compared to that of the "natural" cofactor FMN. Structural analysis (at a resolution of 1.07 Å) revealed that RoFMN binding did not affect the overall topology of the enzyme and also did not interfere with dimerization of AzoR. The AzoR-RoFMN holoenzyme complex was found to be less active (30% of AzoR-FMN activity) in a standard assay. We provide evidence that the different physicochemical properties of RoFMN are responsible for its reduced cofactor activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi400348dDOI Listing

Publication Analysis

Top Keywords

azobenzene reductase
8
reductase azor
8
escherichia coli
8
roseoflavin mononucleotide
8
mononucleotide rofmn
8
revealed rofmn
8
rofmn
6
flavoenzyme azobenzene
4
azor
4
azor escherichia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!