The absolute femtosecond pump-probe signal strength of deprotonated fluorescein in basic methanol is measured. Calculations of the absolute pump-probe signal based on the steady-state absorption and emission spectrum that use only independently measured experimental parameters are carried out. The calculation of the pump-probe signal strength assumes the pump and probe fields are both weak and includes the following factors: the transverse spatial profile of the laser beams; the pulse spectra; attenuation of the propagating pulses with depth in the sample; the anisotropic transition probability for polarized light; and time-dependent electronic population relaxation. After vibrational and solvent relaxation are complete, the calculation matches the measurement to within 10% error without any adjustable parameters. This demonstrates quantitative measurement of absolute excited state population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp4019662 | DOI Listing |
Anal Sci
December 2024
Faculty of Chemistry, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.
The femtosecond pump-probe technique, i.e. the transient transmission spectroscopy, has been used for the first time, to detect the vibrational spectra of symmetric fundamentals ν and ν in bromoform and chloroform.
View Article and Find Full Text PDFPhotoacoustics
August 2024
Advanced Research Center for Nanolithography (ARCNL), Science Park 106, Amsterdam, 1098 XG, The Netherlands.
Strain-induced variation of the refractive index is the main mechanism of strain detection in photoacoustic experiments. However, weak strain-optic coupling in many materials limits the application of photoacoustics as an imaging tool. A straightforward deposition of a transparent thin film as a top layer has previously been shown to provide signal enhancement due to elastic boundary effects.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
The photoinduced ligand desorption from nanocrystal (NC) surfaces plays a critical role in the diverse functionalities of NCs. However, this reaction is inherently complex because photophysical and photochemical reactions are involved, and many aspects remain elusive. In this study, using ZnS NCs coordinated with perylenebisimide (PBI) ligands as a model system, we revealed that pump-push-probe spectroscopy provides detailed insights into the transient species following photoinduced ligand desorption reactions.
View Article and Find Full Text PDFNat Commun
November 2024
School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Nonlinear optical responses in two-dimensional (2D) materials can build free-space optical neuromorphic computing systems. Ensuring the high performance and the tunability of the system is essential to encode diverse functions. However, common strategies, including the integration of external electrode arrays or photonic structures with 2D materials, and barely patterned 2D materials, exhibit a contradiction between performance and tunability.
View Article and Find Full Text PDFUltrasonics
February 2025
Department of Mechanical Engineering The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, PR China. Electronic address:
The recent advances in micromanufacturing have been pushing boundaries of the new generation of semiconductor devices, which, in the meantime, brings new challenges in the material and structural characterization - a key step to ensure the device quality through the micromanufacturing process. An ultrafast laser-enable optoacoustic characterization methodology is developed, targeting in situ calibration and delineation of the three-dimensional (3-D), nanoscopic interior features of opaque semiconductor chips. With the guidance of ultrafast electron-phonon coupling effect and velocity-perturbated optical interference, a femtosecond-laser pump-probe set-up based on Sagnac interferometer is configured to generate and acquire picosecond ultrasonic bulk waves (P-UBWs) traversing the microchips.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!