AI Article Synopsis

  • Prolonged immobilization of rats for 6 hours daily over 2 weeks significantly reduced oxygen levels and consumption in both gum and bone tissues, indicating compromised periodontal health.
  • A decrease of 36% in gum tissue PO2 and a 46% decrease in bone tissue oxygen consumption rate were observed, alongside reduced mitochondrial respiration, especially for NAD-dependent substrates.
  • Treatment with Thiotriazolin and Actovegin helped alleviate the negative effects of stress on oxygen balance in both soft and hard periodontal tissues.

Article Abstract

Influence of prolonged immobilization (6 h strict horizontal position of rats in the tight containers daily for 2 weeks) on oxygen tension, oxygen consumption, pro-/antioxidant balance, and energetic metabolism of soft and hard periodontal tissues has been investigated. It was established that prolonged immobilization stress resulted in marked decrease in the gum tissue PO2 (36%) and in the bone tissue oxygen consumption rate (46%) compared to control. It was also determined that prolonged stress led to a reduction in the gum mitochondrial respiration rate. The latter was more expressed in case of the NAD-dependent substrate oxidation than of the FAD- dependent one. It was determined that the prolonged stress results in intensification of peroxide processes and depletion of antioxidant protection of soft tissues of periodontum. It was found that Thiotriazolin and Actovegin have modified and diminished stress-induced disorders in the soft and hard periodontal tissues oxygen homeostasis under prolonged immobilization stress.

Download full-text PDF

Source

Publication Analysis

Top Keywords

prolonged immobilization
16
periodontal tissues
12
immobilization stress
12
oxygen consumption
8
soft hard
8
hard periodontal
8
determined prolonged
8
prolonged stress
8
prolonged
6
stress
5

Similar Publications

Bone fractures are a leading cause of morbidity and healthcare expenditure globally. The complex healing process involves inflammation, cartilage formation, mineralization, and bone remodeling. Current treatments like immobilization, surgery, and bone grafting, though effective, pose significant challenges, such as prolonged recovery and high costs.

View Article and Find Full Text PDF

Background: Risk factors and mechanisms of cognitive impairment (CI) after aneurysmal subarachnoid hemorrhage (aSAH) are unclear. This study used a neuropsychological battery, MRI, ERP and CSF and plasma biomarkers to predict long-term cognitive impairment after aSAH.

Materials And Methods: 214 patients hospitalized with aSAH (n = 125) or unruptured intracranial aneurysms (UIA) (n = 89) were included in this prospective cohort study.

View Article and Find Full Text PDF

An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.

View Article and Find Full Text PDF

Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.

View Article and Find Full Text PDF

Melatonin antagonizes bone loss induced by mechanical unloading via IGF2BP1-dependent mA regulation.

Cell Mol Life Sci

January 2025

The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.

Disuse bone loss is prone to occur in individuals who lack mechanical stimulation due to prolonged spaceflight or extended bed rest, rendering them susceptible to fractures and placing an enormous burden on social care; nevertheless, the underlying molecular mechanisms of bone loss caused by mechanical unloading have not been fully elucidated. Numerous studies have focused on the epigenetic regulation of disuse bone loss; yet limited research has been conducted on the impact of RNA modification bone formation in response to mechanical unloading conditions. In this study, we discovered that mA reader IGF2BP1 was downregulated in both osteoblasts treated with 2D clinostat and bone tissue in HLU mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!