In experiments in vivo and in vitro on the mitochondria isolated from the control and spontaneously hypertensive rats (SHR) hearts, we studied the effects of a donor of hydrogen sulfide (H2S), NaHS, and H2S biosynthesis substrate, L-cysteine, on the sensitivity of the mitochondrial permeability transition pore (mPTP) opening to its natural inductor, Ca2+. We found that NaHS (10(-4), 10(-5) and 5 10(-5) mol/l) influenced the mitochondrial swelling in a concentration-dependent manner in control and spontaneously hypertensive rats. The H2S donor NaHS used in physiological concentrations (10(-6), 10(-5) and 5 10(-5) mol/l) exerted the inhibiting effect on the Ca(2+)-induced mPTP opening in control hearts (corresponding values of such effect were 31, 76, and 100%, respectively), while in spontaneously hypertensive rats hearts the protector effect of NaHS was observed only at its concentration of 10(-5) - 10(-4) mol/l. In experiments in vivo, single intraperitoneal injections of L-cysteine (10(-3) mol/kg) resulted in a decrease in the sensitivity of mPTP to it's inductor Ca2+ in control rats and SHR. In experiments in vivo in which we used a specific blocker of cystathionine-gamma-lyase, propargylglycine (10(-4) mol/kg), with the further injections of L-cysteine we observed a decrease in the threshold Ca2+ concentration (that induce the mitochondrial swelling) by three orders of magnitude in SHR, but in control rats did not effect of L-cysteine. Thus, both endogenous and exogenous hydrogen sulfide inhibits Ca(2+)-induced mitochondrial permeability transition pore opening, indicating its protective effect on pore formation in spontaneously hypertensive rats hearts. Therefore, our studies are indicative of the involvement of H2S in modulation of changes in the permeability of mitochondrial membranes, which can be an important regulatory factor in the development of cardiovascular diseases.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spontaneously hypertensive
20
hypertensive rats
16
mitochondrial permeability
12
permeability transition
12
transition pore
12
experiments vivo
12
sulfide inhibits
8
inhibits ca2+-induced
8
ca2+-induced mitochondrial
8
pore opening
8

Similar Publications

Aims: We aimed to investigate the role of Rnf40 in hypertension-induced cerebrovascular endothelial barrier dysfunction and cognitive impairment.

Methods: We employed microarray data analysis and integrated bioinformatics databases to identify a novel E3 ligase, Rnf40, that targets Parkin. To understand the role of RNF40 in hypertension-induced cerebrovascular endothelial cell damage, we used pAAV-hFLT1-MCS-EGFP-3×Flag-mir30shRnf40 to establish an Rnf40-deficient model in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

Background: Causes of cerebrospinal fluid (CSF) rhinorrhea could be divided into primary (spontaneous) and secondary (head trauma and iatrogenic). Idiopathic intracranial hypertension (IIH) has emerged as a cause for spontaneous CSF rhinorrhea but is still underestimated, may be overlooked and needs special consideration in management. The objective of this study is to demonstrate spontaneous CSF rhinorrhea as the primary presentation of IIH and explore the algorithm of management.

View Article and Find Full Text PDF

NPA7: A Dual Receptor Activating Peptide That Inhibits Cardiac Oxidative Stress.

Hypertension

January 2025

Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (Xiaoyu Ma, J.C.M., D.G.M., Xiao Ma, Y.Z., S.P., Y.W., S.J.S., J.C.B.).

Background: Cardiomyocyte oxidative stress significantly contributes to the progression of hypertension-induced heart failure, highlighting the need for targeted therapies. We developed a novel peptide, NPA7, that coactivates the GC-A (guanylyl cyclase A)/cGMP and MasR (Mas receptor)/cAMP pathway. This study aimed to test NPA7's ability to inhibit oxidative stress by modulating the p62-KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2-related factor 2) pathway in human cardiomyocytes (HCMs) and a rat model of hypertension.

View Article and Find Full Text PDF

Attention deficit/hyperactivity disorder (ADHD) is defined as a neurodevelopmental condition. The precise underlying mechanisms remain incompletely elucidated. A body of research suggests disruptions in both the cellular architecture and neuronal function within the brain regions of individuals with ADHD, coupled with disturbances in the biochemical parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!