Eg5 (kinesin-5) is a highly conserved microtubule motor protein, essential for centrosome separation and bipolar spindle assembly in human cells. Using an "in vitro" evolution approach, we generated human cancer cells that can grow in the complete absence of Eg5 activity. Characterization of these Eg5-independent cells (EICs) led to the identification of a novel pathway for prophase centrosome separation, which depends on nuclear envelope (NE)-associated dynein. Here, we discuss our recent findings and elaborate on the mechanism by which dynein drives centrosome separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656018PMC
http://dx.doi.org/10.4161/cib.23841DOI Listing

Publication Analysis

Top Keywords

centrosome separation
16
prophase centrosome
8
nuclear envelope-associated
4
envelope-associated dynein
4
dynein cooperates
4
cooperates eg5
4
eg5 drive
4
drive prophase
4
centrosome
4
separation
4

Similar Publications

The nucleophosmin (NPM1) gene encodes for the most abundant nucleolar protein. Thanks to its property to act as histone chaperone and to shuttle between the nucleus and cytoplasm, the NPM1 protein is involved in multiple cellular function that are here extensively reviewed and include the formation of the nucleolus through liquid-liquid phase separation, regulation of ribosome biogenesis and transport, control of DNA repair and centrosome duplication as well as response to nucleolar stress. NPM1 is mutated in about 30-35% of adult acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Separase plays a central role in chromosome separation during mitosis and in centrosome cycle. Tight control of separase activity is required to prevent unscheduled resolution of sister chromatid cohesion and centrosome aberrations, thereby preserving genome stability. In mammals, despite their disassembly in early mitosis, some nuclear envelope components possess mitotic roles, but links with separase activity remain unexplored.

View Article and Find Full Text PDF

Esophageal cancer (EC) is one of the most fatal malignancies worldwide, with a dramatic increase in incidence in the western world occurring over the past few decades. Chromosome instability (CIN) is a major contributor to EC progression, drug resistance, relapse, and the development of intratumoral heterogeneity. This study revealed a striking elevation of AURKB expression in EC patients, with a strong correlation to poor clinical outcomes.

View Article and Find Full Text PDF

Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and also serve as signaling platforms. In the fission yeast Schizosaccharomyces pombe, genetic ablation and high-resolution imaging indicate that the α-helical Ppc89 is central to SPB structure and function. Here, we developed and characterized conditional and truncation mutants of ppc89.

View Article and Find Full Text PDF

CEP112 coordinates translational regulation of essential fertility genes during spermiogenesis through phase separation in humans and mice.

Nat Commun

September 2024

Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China.

Spermiogenesis, the complex transformation of haploid spermatids into mature spermatozoa, relies on precise spatiotemporal regulation of gene expression at the post-transcriptional level. The mechanisms underlying this critical process remain incompletely understood. Here, we identify centrosomal protein 112 (CEP112) as an essential regulator of mRNA translation during this critical developmental process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!