The present work demonstrates that cDNAs coding for cytochrome P450 enzymes can be transfected into mammalian cells and expressed. In the present studies, two different cell systems were used for transfection: 10T1/2 cells which can be used to study initiation and promotion (Diamond, 1984) and AHH-1 cells which can be used to study mutation and clastogenesis (Crespi and Thilly, 1984, Crespi and Penman, 1989). Thus, a diversity of endpoints can be studied in cells which have increased metabolic capability. By increasing the metabolic capability of the target cell, the effects of nongenotoxic as well as genotoxic chemicals, can be examined in the appropriate in vitro systems. For example, the 10T1/2 cells can be treated with a nontransforming dose of an initiator followed by continuous treatment with a second chemical that requires cytochrome P450 specific metabolism to manifest its promoting activity. By this approach, greater insight into the role of chemical metabolism in the promotion process (and presumably other nongenotoxic effects) can be obtained. Additionally, the role of specific cytochrome P450s in the metabolism of different classes of carcinogens/drugs can be elucidated. A major advantage of having the metabolizing enzymes actually present in the target cell is that effects of chemicals can be studied in long-term, low-dose exposure protocols which will eliminate the acute toxic effects which are associated with many current protocols. Thus, more realistic environmental exposure conditions can be achieved by using these in vitro systems containing endogenous metabolism systems.
Download full-text PDF |
Source |
---|
Clin Pharmacol Drug Dev
January 2025
Takeda Development Center Americas, Inc., Cambridge, MA, USA.
Mobocertinib is a kinase inhibitor designed to selectively target epidermal growth factor receptor (EGFR) exon 20 insertion (ex20ins) mutations in non-small cell lung cancer. This drug-drug interaction study assessed the effect of multiple-dose administration of mobocertinib on the pharmacokinetics (PK) of midazolam, a sensitive cytochrome P450 3A substrate. Patients with locally advanced or metastatic non-small cell lung cancer refractory/intolerant to standard available therapy were enrolled.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter's (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory responses.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Chemistry, University of California, Davis, California 95616, United States.
NysL, a cytochrome P450 monooxygenase from the Gram-positive bacterium Streptomyces noursei, catalyzes the C10 hydroxylation of 10-deoxynystain to nystatin A, a clinically important antifungal. In this study, we present the 2.0 Å resolution crystal structure of NysL bound to nystatin A.
View Article and Find Full Text PDFSci Total Environ
January 2025
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:
Polychlorinated biphenyls (PCBs), a typical type of persistent organic pollutants (POPs), were previously widely employed as insulating and heat exchange fluids in transformers and capacitors. Despite knowledge of its adverse effects, the precise mechanism underlying PCB77 toxicity remains enigmatic. In this study, we utilized zebrafish as a model organism to explore the toxic effects of various concentrations of PCB77 (10, 200, and 1000 μg/L) and its molecular toxicity mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!