Chemoresistance is one of the most critical prognostic factors in osteosarcoma, and elucidation of the molecular backgrounds of chemoresistance may lead to better clinical outcomes. Spheroid cells resemble in vivo cells and are considered an in vitro model for the drug discovery. We found that spheroid cells displayed more chemoresistance than conventional monolayer cells across 11 osteosarcoma cell lines. To investigate the molecular mechanisms underlying the resistance to chemotherapy, we examined the proteomic differences between the monolayer and spheroid cells by 2D-DIGE. Of the 4762 protein species observed, we further investigated 435 species with annotated mass spectra in the public proteome database, Genome Medicine Database of Japan Proteomics. Among the 435 protein species, we found that 17 species exhibited expression level differences when the cells formed spheroids in more than five cell lines and four species out of these 17 were associated with spheroid-formation associated resistance to doxorubicin. We confirmed the upregulation of cathepsin D in spheroid cells by western blotting. Cathepsin D has been implicated in chemoresistance of various malignancies but has not previously been implemented in osteosarcoma. Our study suggested that the spheroid system may be a useful tool to reveal the molecular backgrounds of chemoresistance in osteosarcoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201300053 | DOI Listing |
Biophys Rev
December 2024
Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.
Cells and tissues are often under some level of confinement, imposed by the microenvironment and neighboring cells, meaning that there are limitations to cell size, volume changes, and fluid exchanges. 3D cell culture, increasingly used for both single cells and organoids, inherently impose levels of confinement absent in 2D systems. It is thus key to understand how different levels of confinement influences cell survival, cell function, and cell fate.
View Article and Find Full Text PDFJ Diabetes Investig
January 2025
Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
Aims/introduction: Metformin treatment for hyperglycemia in pregnancy (HIP) beneficially improves maternal glucose metabolism and reduces perinatal complications. However, metformin could impede pancreatic β cell development via impaired mitochondrial function. A new anti-diabetes drug imeglimin, developed based on metformin, improves mitochondrial function.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, Brno CZ-61200, Czech Republic; Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, Olomouc 783 71, Czech Republic. Electronic address:
Platinum(IV) compounds possess distinct properties that set them apart from platinum(II) compounds. Often designed as prodrugs, they are reduced within cancer cells to their active platinum(II) form, enabling their cytotoxic effects. Their versatility also lies in their ability to be functionalized and conjugated with bioactive molecules to enhance cancer cell targeting.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA. Electronic address:
A common strategy for promoting bone allograft healing is the design of tissue-engineered periosteum (TEP) to orchestrate host-tissue infiltration. However, evaluating requires costly and time-consuming in vivo studies. Therefore, in vitro assays are necessary to expedite TEP designs.
View Article and Find Full Text PDFBiol Res
January 2025
Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
Background: Gastric cancer (GC) is a significant cancer-related cause of death worldwide. GC's most used chemotherapeutic regimen is based on platinum drugs such as cisplatin (CDDP). However, CDDP chemoresistance reduces the survival rate of advanced GC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!