It has been demonstrated that the organic damages of animals can be caused by exposure to lanthanide oxides or compounds. However, the molecular mechanism of CeCl3 -induced kidney injury remains unclear. In this study, the mechanism of nephric damage in mice induced by an intragastric administration of CeCl3 was investigated. The results showed that Ce(3+) was accumulated in the kidney, which in turn led to oxidative stress, severe nephric inflammation, and dysfunction in mice. Furthermore, CeCl3 activated nucleic factor κB, which in turn increased the expression levels of tumor necrosis factor α, macrophage migration inhibitory factor, interleukin-2, interleukin-4, interleukin-6, interleukin-8, interleukin-10, interleukin-18, interleukin-1β, cross-reaction protein, transforming growth factor-β, interferon-γ, and CYP1A1, while suppressed heat shock protein 70 expression. These findings implied that Ce(3+) -induced kidney injury of mice might be associated with oxidative stress, alteration of inflammatory cytokine expression, and reduction of detoxification of CeCl3 .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tox.21872 | DOI Listing |
Nat Biomed Eng
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
The utility of urinary tests for the monitoring of the treatment efficacy and adverse events of anticancer therapies is constrained by the low concentration of relevant urinary biomarkers. Here we report, using mice with lung cancer and treated with chemotherapy, of a urinary fluorescence test for the concurrent monitoring of the levels of a tumour biomarker (cathepsin B) and of a biomarker of chemotherapy-induced kidney injury (N-acetyl-β-D-glucosaminidase). The test involves two intratracheally administered urinary reporters leveraging caged bioorthogonal click handles for the biomarker-dependent activation of 'clickability' and renal clearance, and the bioorthogonal click reaction of each renally cleared reporter with paired fluorescence indicators in the collected urine.
View Article and Find Full Text PDFJ Cardiothorac Vasc Anesth
January 2025
Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA.
Vasoplegia is a pathophysiologic state of hypotension in the setting of normal or high cardiac output and low systemic vascular resistance despite euvolemia and high-dose vasoconstrictors. Vasoplegia in heart, lung, or liver transplantation is of particular interest because it is common (approximately 29%, 28%, and 11%, respectively), is associated with adverse outcomes, and because the agents used to treat vasoplegia can affect immunosuppressive and other drug metabolism. This narrative review discusses the pathophysiology, risk factors, and treatment of vasoplegia in patients undergoing heart, lung, and liver transplantation.
View Article and Find Full Text PDFAm J Chin Med
January 2025
School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China.
Ginkgolic acids (GAs) are distinctive secondary metabolites of () primarily found in its leaves and seeds, with the highest concentration located in the exotesta. GAs are classified as long-chain phenolic compounds, and exhibit structural similarities to lignoceric acid. Their structural diversity arises from variations in the length of side chains and their number of double bonds, resulting in six distinct forms within extracts (GBE).
View Article and Find Full Text PDFKeio J Med
January 2025
I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation.
We describe a case of sarcoidosis in a previously healthy 39-year-old man with the development of an acute kidney injury, requiring renal replacement therapy, as the first manifestation of the disease. The course of the disease was complicated by a сatheter-associated bloodstream infection. According to the histological examination of kidney biopsy samples, granulomatous interstitial nephritis was diagnosed.
View Article and Find Full Text PDFObjectives: This study aimed to develop a prediction model for the detection of early sepsis-associated acute kidney injury (SA-AKI), which is defined as AKI diagnosed within 48 hours of a sepsis diagnosis.
Design: A retrospective study design was employed. It is not linked to a clinical trial.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!