Chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites were synthesized by a novel in situ precipitation method. The electrostatic adsorption between multiwalled carbon nanotubes and chitosan was investigated and explained by Fourier transform infrared spectroscopy analysis. Morphology studies showed that uniform distribution of hydroxyapatite particles and multiwalled carbon nanotubes in the polymer matrix was observed. In chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites, the diameters of multiwalled carbon nanotubes were about 10 nm. The mechanical properties of the composites were evaluated by measuring their compressive strength and elastic modulus. The elastic modulus and compressive strength increased sharply from 509.9 to 1089.1 MPa and from 33.2 to 105.5 MPa with an increase of multiwalled carbon/chitosan weight ratios from 0 to 5 %, respectively. Finally, the cell biocompatibility of the composites was tested in vitro, which showed that they have good biocompatibility. These results suggest that the chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites are promising biomaterials for bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-013-4954-x | DOI Listing |
Food Chem
November 2023
Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA.
An imbalance of l-tryptophan (l-Trp), a basic component of a healthy diet, is harmful to human health. Traditional methods for detecting l-Trp have many limitations. To correct a deficiency or excess of l-Trp in human diets, it is necessary to develop a novel method that is rapid, low-cost, and high-sensitivity.
View Article and Find Full Text PDFBiosensors (Basel)
December 2022
School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
Tenofovir disoproxil fumarate (TDF) is an antiretroviral medication with significant curative effects, so its quantitative detection is important for human health. At present, there are few studies on the detection of TDF by electrochemical sensors. This work can be a supplement to the electrochemical detection of TDF.
View Article and Find Full Text PDFPolymers (Basel)
April 2021
Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
The biocompatibility of carbon nanotubes (CNT) is fairly a challenging task for their applications in nanomedicine. Therefore, the objective of this research was to formulate four types of highly biocompatible betulinic acid-loaded biopolymer nanocomposites, namely chitosan-multiwalled carbon nanotubes (MWBA-CS), polyethylene glycol-multiwalled carbon nanotubes (MWBA-PG), Tween 20-multiwalled carbon nanotubes (MWBA-T2) and Tween 80-multiwalled carbon nanotubes (MWBA-T8). The physico-chemical properties of the modified nanocomposites were determined by Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and Raman spectroscopy, while the surface morphology of the resulting nanocomposites was studied using field emission scanning electron microscopy (FESEM).
View Article and Find Full Text PDFAnal Chem
June 2019
Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering , Southeast University, Nanjing , 211189 , China.
This work reports an electrofluorochromic strategy on the basis of electric field control of fluorescent signal generation on bipolar electrodes (BPEs) for visualizing cancer cell surface glycoprotein (mucin 1). The device included two separate cells: anodic sensing cell and cathodic reporting cell, which were connected by a screen-printing electrode patterned on poly(ethylene terephthalate) (PET) membrane. In the sensing cell, anti-MUC1 antibody immobilized on a chitosan-multiwalled carbon nanotube (CS-MWCNT)-modified anodic BPE channel was used for capturing mucin-1 (MUC1) or MCF-7 cancer cells.
View Article and Find Full Text PDFPolymers (Basel)
March 2018
School of Engineering, Zhejiang A&F University, Hangzhou 311300, China.
A novel composite composed of lignocellulose (LC), glutaraldehyde crosslinked chitosan (GC) and multiwalled carbon nanotube (MWCNT) was fabricated by the hot-pressing process. The effect of the additional GC and MWCNT on the mechanical strength, dimensional stability and fire retardancy of lignocellulose composites was investigated. The results showed that LC/GC/MWCNT composite exhibited the maximum modulus of rupture (MOR) of 35.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!