Automatic and real time recognition of microalgae by means of pigment signature and shape.

Environ Sci Process Impacts

Istituto di Scienza e Tecnologia Informazione, CNR, Via Moruzzi 1, 56124 Pisa, Italy.

Published: July 2013

Microalgae are unicellular photoautotrophic organisms that grow in any habitat such as fresh and salt water bodies, hot springs, ice, air, and in or on other organisms and substrates. Massive growth of microalgae may produce harmful effects on the marine and freshwater ecological environment and fishery resources. Therefore, rapid and accurate recognition and classification of microalgae is one of the most important issues in water resource management. In this paper, a new methodology for automatic and real time identification of microalgae by means of microscopy image analysis is presented. This methodology is based on segmentation, shape features extraction, and characteristic colour (i.e. pigment signature) determination. A classifier algorithm based on the minimum distance criterion was used for microalgae grouping according to the measured features. 96.6% accuracy from a set of 3423 images of 24 different microalgae representing the major algal phyla was achieved by this methodology.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3em00160aDOI Listing

Publication Analysis

Top Keywords

automatic real
8
real time
8
pigment signature
8
microalgae
7
time recognition
4
recognition microalgae
4
microalgae pigment
4
signature shape
4
shape microalgae
4
microalgae unicellular
4

Similar Publications

Travelable area boundaries not only constrain the movement of field robots but also indicate alternative guiding routes for dynamic objects. Publicly available road boundary datasets have outlined boundaries by binary segmentation labels. However, hard post-processes have to be done to extract from detected boundaries further semantics including the shapes of the boundaries and guiding routes, which poses challenges to a real-time visual navigation system without detailed prior maps.

View Article and Find Full Text PDF

Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.

View Article and Find Full Text PDF

Missing values arise routinely in real-world sequential (string) datasets due to: (1) imprecise data measurements; (2) flexible sequence modeling, such as binding profiles of molecular sequences; or (3) the existence of confidential information in a dataset which has been deleted deliberately for privacy protection. In order to analyze such datasets, it is often important to replace each missing value, with one or more letters, in an efficient and effective way. Here we formalize this task as a combinatorial optimization problem: the set of constraints includes the of the missing value (i.

View Article and Find Full Text PDF

Lighting systems account for a significant proportion of energy consumption in buildings. Therefore, energy conservation within these systems can greatly enhance overall building energy efficiency. This study proposes a control strategy for LED lamps by adjusting lighting intensity and improving the performance of electric luminaires.

View Article and Find Full Text PDF

Background: Studies suggest that less than 4% of patients with pulmonary embolisms (PEs) are managed in the outpatient setting. Strong evidence and multiple guidelines support the use of the Pulmonary Embolism Severity Index (PESI) for the identification of acute PE patients appropriate for outpatient management. However, calculating the PESI score can be inconvenient in a busy emergency department (ED).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!