Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. We have recently shown that human mesenchymal stem cells (hMSCs) modified to release glial cell line-derived neurotrophic factor (GDNF) decrease disease progression in a rat model of ALS when delivered to skeletal muscle. In the current study, we determined whether or not this effect could be enhanced by delivering GDNF in concert with other trophic factors. hMSC engineered to secrete GDNF (hMSC-GDNF), vascular endothelial growth factor (hMSC-VEGF), insulin-like growth factor-I (hMSC-IGF-I), or brain-derived neurotrophic factor (hMSC-BDNF), were prepared and transplanted bilaterally into three muscle groups. hMSC-GDNF and hMSC-VEGF prolonged survival and slowed the loss of motor function, but hMSC-IGF-I and hMSC-BDNF did not have any effect. We then tested the efficacy of a combined ex vivo delivery of GDNF and VEGF in extending survival and protecting neuromuscular junctions (NMJs) and motor neurons. Interestingly, the combined delivery of these neurotrophic factors showed a strong synergistic effect. These studies further support ex vivo gene therapy approaches for ALS that target skeletal muscle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734670 | PMC |
http://dx.doi.org/10.1038/mt.2013.108 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!