A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers. | LitMetric

Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers.

Colloids Surf B Biointerfaces

College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.

Published: October 2013

Fabrication of nanofiber-based drug delivery system with controlled release property is of general interest in biomedical sciences. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded halloysite nanotubes/poly(lactic-co-glycolic acid) composite nanofibers (TCH/HNTs/PLGA), and evaluated the drug release and antibacterial activity of this drug delivery system. The structure, morphology, and mechanical properties of the formed electrospun TCH/HNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. We show that the incorporation of TCH-loaded HNTs within the PLGA nanofibers is able to improve the tensile strength and maintain the three-dimensional structure of the nanofibrous mats. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the fibrous scaffolds demonstrate that the developed TCH/HNTs/PLGA composite nanofibers are cytocompatible. More importantly, the TCH/HNTs/PLGA composite nanofibers are able to release the antibacterial drug TCH in a sustained manner for 42 days and display antimicrobial activity solely associated with the encapsulated TCH drug. With the improved mechanical durability, sustained drug release profile, good cytocompatibility, and non-compromised therapeutic efficacy, the developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for tissue engineering and drug delivery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2013.04.036DOI Listing

Publication Analysis

Top Keywords

composite nanofibers
16
drug delivery
16
release antibacterial
12
delivery system
12
tch/hnts/plga composite
12
drug
9
controlled release
8
antibacterial activity
8
acid composite
8
drug release
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!