Chemotherapy-induced peripheral neuropathy (CIPN) is a serious, painful and dose-limiting side effect of cancer drugs that target microtubules. The mechanisms underlying the neuronal damage are unknown, but may include disruption of fast axonal transport, an essential microtubule-based process that moves cellular components over long distances between neuronal cell bodies and nerve terminals. This idea is supported by the "dying back" pattern of degeneration observed in CIPN, and by the selective vulnerability of sensory neurons bearing the longest axonal projections. In this study, we test the hypothesis that microtubule-targeting drugs disrupt fast axonal transport using vesicle motility assays in isolated squid axoplasm and a cell-free microtubule gliding assay with defined components. We compare four clinically-used drugs, eribulin, vincristine, paclitaxel and ixabepilone. Of these, eribulin is associated with a relatively low incidence of severe neuropathy, while vincristine has a relatively high incidence. In vesicle motility assays, we found that all four drugs inhibited anterograde (conventional kinesin-dependent) fast axonal transport, with the potency being vincristine=ixabepilone>paclitaxel=eribulin. Interestingly, eribulin and paclitaxel did not inhibit retrograde (cytoplasmic dynein-dependent) fast axonal transport, in contrast to vincristine and ixabepilone. Similarly, vincristine and ixabepilone both exerted significant inhibitory effects in an in vitro microtubule gliding assay consisting of recombinant kinesin (kinesin-1) and microtubules composed of purified bovine brain tubulin, whereas paclitaxel and eribulin had negligible effects. Our results suggest that (i) inhibition of microtubule-based fast axonal transport may be a significant contributor to neurotoxicity induced by microtubule-targeting drugs, and (ii) that individual microtubule-targeting drugs affect fast axonal transport through different mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4169189PMC
http://dx.doi.org/10.1016/j.neuro.2013.05.008DOI Listing

Publication Analysis

Top Keywords

fast axonal
28
axonal transport
28
microtubule gliding
12
microtubule-targeting drugs
12
eribulin vincristine
8
vincristine paclitaxel
8
paclitaxel ixabepilone
8
axonal
8
chemotherapy-induced peripheral
8
peripheral neuropathy
8

Similar Publications

Spontaneous muscle activity in multifocal motor neuropathy - Insights from axonal excitability testing.

Clin Neurophysiol

January 2025

Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine and Neuroscience, University of Copenhagen, Denmark; Department of Neurology, Rigshospitalet, Copenhagen, Denmark.

Objective: To investigate motor axonal excitability in multifocal motor neuropathy (MMN) associated with involuntary muscle activity.

Methods: Two MMN patients with continuous involuntary finger movements (MMNifm) were compared to 11 patients without movements (MMNnfm). Clinical examination, EMG of the abductor pollicis brevis muscle, nerve conduction studies, motor unit number estimation, excitability studies, and mathematical modeling were conducted in the patients with MMN and compared to controls.

View Article and Find Full Text PDF

While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigate whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engage head-fixed male mice in a multimodal rule-reversal task guided by olfactory and auditory cues.

View Article and Find Full Text PDF

The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders.

Rev Neurosci

January 2025

Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran.

Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors.

View Article and Find Full Text PDF

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Neurocan regulates axon initial segment organization and neuronal activity.

Matrix Biol

January 2025

German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. Electronic address:

The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!