Cloning of the xylose reductase gene of Candida milleri.

J Microbiol Biotechnol

Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea.

Published: February 2014

The entire nucleotide sequence of the xylose reductase (XR) gene in Candida milleri CBS8195 sourdough yeast was determined by degenerate polymerase chain reaction (PCR) and genome walking. The sequence analysis revealed an open-reading frame of 981 bp that encoded 326 amino acids with a predicted molecular mass of 36.7 kDa. The deduced amino acid sequence of XR of C. milleri was 64.7% homologous to that of Kluyveromyces lactis. The cloned XR gene was expressed in Saccharomyces cerevisiae, and the resulting recombinant S. cerevisiae strain produced xylitol from xylose, indicating that the C. milleri XR introduced into S. cerevisiae is functional. An enzymatic activity assay and semiquantitative reverse transcription-PCR revealed that the expression of CmXR was induced by xylose.

Download full-text PDF

Source
http://dx.doi.org/10.4014/jmb.1305.05012DOI Listing

Publication Analysis

Top Keywords

xylose reductase
8
reductase gene
8
gene candida
8
candida milleri
8
cloning xylose
4
milleri
4
milleri entire
4
entire nucleotide
4
nucleotide sequence
4
sequence xylose
4

Similar Publications

Aldose Reductase: A Promising Therapeutic Target for High-Altitude Pulmonary Edema.

Int J Mol Sci

January 2025

Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.

The Qinghai-Tibet Plateau, famously known as the "Roof of the World", has witnessed a surge in individuals traveling or working there. However, a considerable percentage of these individuals may suffer from acute mountain sickness (AMS), with high-altitude pulmonary edema (HAPE) being a severe and potentially life-threatening manifestation. HAPE disrupts the balance of intrapulmonary tissue fluid, resulting in severe lung function impairment.

View Article and Find Full Text PDF

Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae.

Transgenic Res

January 2025

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.

Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.

View Article and Find Full Text PDF

Plant cuticular waxes serve as highly responsive adaptations to variable environments. Aliphatic waxes consist of very-long-chain (VLC) compounds produced from 1-alcohol- or alkane-forming pathways. The existing variation in 1-alcohols and alkanes across Arabidopsis accessions revealed that 1-alcohol amounts are negatively correlated with aridity factors, whereas alkanes display the opposite behaviour.

View Article and Find Full Text PDF

Multienzyme cascade for synthesis of hydroxytyrosol via engineered Escherichia coli.

Sci Rep

January 2025

Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China.

Hydroxytyrosol, a fine chemical, is widely utilized in food and pharmaceutical industries. In this study, we constructed a pathway to produce hydroxytyrosol by co-expressing tyrosin-phenol lyase (TPL), L-amino acid dehydrogenase (aadL), α-keto acid decarboxylase (KAD), aldehyde reductase (yahK) and glucose dehydrogenase (gdh). We changed combinations between plasmids with different copy numbers and target genes, resulting in 84% increase in hydroxytyrosol production.

View Article and Find Full Text PDF
Article Synopsis
  • Sinonasal inverted papilloma (SNIP) has a high recurrence rate and the potential to become malignant, but its specific metabolic pathways and biomarkers are not fully understood.
  • RNA sequencing identified significant gene alterations related to the estrogen biosynthesis pathway and highlighted five key biomarkers (AKR1B10, CYP1B1, CYP2C19, CYP3A5, and HSD17B13) that were correlated with SNIP pathogenesis.
  • Functional analysis indicated that these biomarkers are involved in epithelial cell proliferation and EGFR signaling regulation, suggesting their potential as diagnostic and therapeutic targets for managing SNIP.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!