Introduction: Computed tomography (CT) and magnetic resonance imaging (MRI) can provide detailed anatomic structures and quantitative function information for chronic obstructive pulmonary disease (COPD).

Objectives: To prospectively clarify characteristics of pulmonary function test (PFT), CT volume parameters and magnetic resonance (MR) perfusion imaging in COPD patients with different high-resolution computed tomography (HRCT) phenotypes.

Methods: Sixty-two patients performed PFT, CT and MR perfusion imaging. COPD was classified into three phenotypes according to HRCT quantitative findings: A, E and M phenotype. Total lung volume (TLV), total emphysema volume (TEV) and emphysema index (EI) were quantitated by HRCT. In cases of perfusion defects (PDs), the shape and size were evaluated. The contrast between the normal lung and PDs was quantified by calculating their signal intensity ratio (RSI  = SIPD /SInormal ). The correlation was performed between PFT, CT and MR perfusion.

Results: There were 42 A phenotype, 9 E phenotype and 11 M phenotype. There was significant difference in forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) between A and M phenotype (P < 0.05). TEV and EI of A phenotype (0.4 ± 0.4 L and 8.0% ± 4.3%) were lower than those of E (1.0 ± 0.3 L and 18.6% ± 3.2%) or M phenotype (0.9 ± 0.2 L and 17.5% ± 1.7%). MR perfusion images showed circumscribed or diffuse patchy PDs. RSI of A phenotype was higher than that of E phenotype (20.3% ± 8.5% vs 11.8% ± 5.4%; P = 0.006). TEV and EI were moderate negatively correlated with diffusion function parameters. RSI was strongly correlated with FEV1% (A) and FEV1/FVC (M). FEV1/FVC was strongly correlated with TEV or EI (E).

Conclusion: There were different features and correlations between PFT, CT volume and MR perfusion in different phenotype, indicating each phenotype may have novel imaging method guiding clinical management.

Download full-text PDF

Source
http://dx.doi.org/10.1111/crj.12033DOI Listing

Publication Analysis

Top Keywords

perfusion imaging
12
imaging copd
12
pulmonary function
8
function test
8
copd patients
8
computed tomography
8
magnetic resonance
8
performed pft
8
phenotype phenotype
8
volume
5

Similar Publications

Jejunal Artery Aneurysm Exclusion With Immediate Vascular Reconstruction: A Case Report.

Port J Card Thorac Vasc Surg

January 2025

Angiology and Vascular Surgery, Unidade Local de Saúde de São João; Surgery and Physiology, Faculdade de Medicina da Universidade do Porto, Portugal.

A 44 year-old previously healthy woman presented a persistent epigastric pain. Computed tomography revealed a saccular aneurysm with a diameter of 25x20 mm in the first jejunal artery and also a stenosis in the celiac trunk associated with median arcuate ligament syndrome, turning the hepatic perfusion dependent of the gastroduodenal artery flow. Through a midline laparotomy, celiac axis was exposed, and median arcuate ligament released for median arcuate ligament syndrome treatment.

View Article and Find Full Text PDF

Objectives: To conduct a meta-analysis of the diagnostic performance of non-contrast magnetic resonance pulmonary angiography (NC-MRPA) and ventilation-perfusion (V/Q) scintigraphy for the detection of acute pulmonary embolism (PE).

Materials And Methods: Systematic searches of electronic databases were conducted from 2000 to 2024. Primary outcomes were per-patient sensitivity and specificity of NC-MRPA and V/Q scintigraphy.

View Article and Find Full Text PDF

Finger amputations following complex hand injuries (CHI) pose a significant challenge in hand surgery due to severe tissue trauma and neurovascular damage, necessitating precise arterial repair. While restoring arterial perfusion is critical, it remains unclear whether reconstructing both proper palmar digital arteries is required for optimal outcomes. This study evaluates whether restoring one or both arteries in finger replantation after complex injuries impacts perfusion and overall outcomes.

View Article and Find Full Text PDF

Detecting asymptomatic cement pulmonary embolisms following vertebral augmentation using dual-energy computed tomography pulmonary angiography.

J Formos Med Assoc

January 2025

Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Imaging, National Taiwan University Cancer Center, Taipei, Taiwan.

Background And Purpose: Dual-energy computed tomography (DECT) pulmonary angiography can reliably detect cement pulmonary embolisms (CPEs) and parenchymal perfusion defects. This prospective observational study investigated CPEs in asymptomatic patients using DECT.

Methods: We enrolled 42 patients who underwent vertebroplasty or received cement screws for vertebral augmentation, examining them using spinal computed tomography and DECT pulmonary angiography.

View Article and Find Full Text PDF

The Role of Imaging in Pulmonary Vascular Disease: The Clinician's Perspective.

Radiol Clin North Am

March 2025

Department of Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA; Department of Pediatrics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA. Electronic address:

Pulmonary vascular diseases, particularly when accompanied by pulmonary hypertension, are complex disorders often requiring multimodal imaging for diagnosis and monitoring. Echocardiography is the primary screening tool for pulmonary hypertension, while cardiac MR imaging (CMR) is used for more detailed characterization and risk stratification in right ventricular failure. Chest computed tomography (CT) is used to detect vascular anomalies and parenchymal lung diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!