In the dioecious genus Populus, sex determination has been located to chromosome 19. However, despite a high degree of genome collinearity, various Populus species seem to differ with regard to the location of the sex-determining region on the respective chromosome and the apparent heterogametic sex. In this study, the boundaries of the recombination-suppressed, sex-linked region of the male P. tremuloides clone Turesson 141 were localised by genetic mapping using new SNP and InDel markers. The respective region seems to be located in a pericentromeric position. The corresponding P. trichocarpa genome region spans about two million bp and comprises 65 gene loci, which were bioinformatically evaluated for their potential as candidate genes for sex determination. Three putative transcription factor genes and four genes that are potentially involved in flower development processes, e.g. meristem transition from the vegetative to the reproductive phase, were identified. Populus tremuloides sequence data of the sex-linked region is required for a final search for candidate genes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/plb.12048DOI Listing

Publication Analysis

Top Keywords

sex-linked region
12
populus tremuloides
8
turesson 141
8
sex determination
8
candidate genes
8
region
6
populus
4
region populus
4
tremuloides turesson
4
141 corresponds
4

Similar Publications

Background: , a member of the Sciaenidae family, is widely distributed across the sea areas near China, Japan, Australia, and South Africa. The aim of this study is to provide a high-quality genome with new technology and to understand the sex determination mechanism of this species.

Methods: We generated a high-quality chromosome-level genome for using PacBio HiFi and Hi-C sequencing technologies.

View Article and Find Full Text PDF

Biochemical and evolutionary interactions between mitochondrial and nuclear genomes ('mitonuclear interactions') are proposed to underpin fundamental aspects of biology including evolution of sexual reproduction, adaptation and speciation. We investigated the role of pre-mating isolation in maintaining functional mitonuclear interactions in wild populations bearing diverged, putatively co-adapted mitonuclear genotypes. Two lineages of eastern yellow robin Eopsaltria australis-putatively climate-adapted to 'inland' and 'coastal' climates-differ by ~7% of mitogenome nucleotides, whereas nuclear genome differences are concentrated into a sex-linked region enriched with mitochondrial functions.

View Article and Find Full Text PDF

Comparative mitogenomic analysis and phylogeny of Veneridae with doubly uniparental inheritance.

Open Biol

November 2024

Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, People's Republic of China.

Doubly uniparental inheritance (DUI) is an atypical animal mtDNA inheritance system, reported so far only in bivalve species, in which two mitochondrial lineages exist: one transmitted through the egg (F-type) and the other through the sperm (M-type). Although numerous species exhibit this unusual organelle inheritance, it is primarily documented in marine and freshwater mussels. The distribution, function and molecular evolutionary implications of DUI in the family Veneridae, however, remain unclear.

View Article and Find Full Text PDF

The evolution of sex chromosomes can involve recombination suppression sometimes involving structural changes, such as inversions, allowing subsequent rearrangements, including inversions and gene transpositions. In the two major genus Salix clades, Salix and Vetrix, almost all species are dioecious, and sex-linked regions have evolved on chromosome 7 and 15, with either male or female heterogamety. We used chromosome conformation capture (Hi-C) and PacBio HiFi (high-fidelity) reads to assemble chromosome-level, gap-free X and Y chromosomes from both clades, S.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the W chromosome of Eulimnadia texana, a crustacean with a unique breeding system, to understand the evolution of early sex chromosomes and their characteristics.
  • Researchers mapped sex-linked markers and identified transposable elements (TEs) on the W chromosome, finding a region with higher TE accumulation and low gene density or GC content.
  • The findings indicate that E. texana's W chromosome has a localized area of crossover suppression, suggesting it is an early stage in the development of sex chromosomes, making it a valuable model for future research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!